期刊文献+
共找到1,429篇文章
< 1 2 72 >
每页显示 20 50 100
Soft–strong supporting mechanism of gob-side entry retaining in deep coal seams threatened by rockburst 被引量:9
1
作者 Ning Jianguo Wang Jun +2 位作者 Liu Xuesheng Qian Kun Sun Bi 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期805-810,共6页
When gob-side entry retaining is implemented in deep coal seams threatened by rockburst, the cementbased supporting body beside roadway will bear greater roof pressure and strong impact load. Then the supporting body ... When gob-side entry retaining is implemented in deep coal seams threatened by rockburst, the cementbased supporting body beside roadway will bear greater roof pressure and strong impact load. Then the supporting body may easily deform and fail because of its low strength in the early stage. This paper established the roadside support mechanical model of gob-side entry retaining. Based on this model,we proposed and used the soft–strong supporting body as roadside support in the gob-side entry retaining. In the early stage of roof movement, the soft–strong supporting body has a better compressibility, which can not only relieve roof pressure and strong impact load, but also reduce the supporting resistance and prevent the supporting body from being crushed. In the later stage, with the increase of the strength of the supporting body, it can better support the overlying roof. The numerical simulation results and industrial test show that the soft–strong supporting body as roadside support can be better applied into the gob-side entry retaining in deep coal seams threatened by rockburst. 展开更多
关键词 采空区侧 冲击地压 深部煤层 配套性 威胁 机制 冲击负荷 支撑体
下载PDF
Coupling mechanism of roof and supporting wall in gob-side entry retaining in fully-mechanized mining with gangue backfilling 被引量:15
2
作者 Ma Zhanguo Gong Peng Fan Jinquan Geng Minmin Zhang Guowei 《Mining Science and Technology》 EI CAS 2011年第6期829-833,共5页
We analyzed the deformation characteristics of overlying stratum in backfilling with fully-mechanized and retaining roadways along the gob area coal mining technology, and established a mechanical model for the roof k... We analyzed the deformation characteristics of overlying stratum in backfilling with fully-mechanized and retaining roadways along the gob area coal mining technology, and established a mechanical model for the roof key stratum of retaining roadways along gob under the conditions of backfilling and fully- mechanized coal mining technology. Using Winkler elastic foundation theory, we analyzed a part of the key stratum under the action of elastic foundation coupling problem, and derived deflection analyt- ical expressions. Combined with specific conditions, we obtained the deflection curves for the roof key stratum of retaining roadways along gob under the conditions of backfilling and fully-mechanized coal mining technology. On this basis, we adopted the Coulomb's earth pressure theory to solve the problem of lateral pressure of the gangue filling area on the supporting wall beside the roadway and to provide the theoretical basis for reasonable selection of the distance between gangue concrete wall and roof and fur- ther discussion on the supporting stability of roadway. 展开更多
关键词 机械化采煤 矸石回填 全机械化 采空区侧 屋顶 耦合机制 挡土墙 墙壁
下载PDF
Position-optimization on retained entry and backfilling wall in gob-side entry retaining techniques 被引量:6
3
作者 Xiaowei Feng Nong Zhang 《International Journal of Coal Science & Technology》 EI 2015年第3期186-195,共10页
关键词 沿空留巷技术 位置优化 稳定性问题 充填 回填方法 地质条件 淮南矿区
下载PDF
Research on the width of filling body in gob-side entry retaining with high-water materials 被引量:8
4
作者 Chang Qingliang Tang Weijun +1 位作者 Xu Ying Zhou Huaqiang 《International Journal of Mining Science and Technology》 EI CSCD 2018年第3期519-524,共6页
To determine the filling body's width along the gob-side remained roadway which is underneath the gob,the authors analyzed the interaction mechanism between the roof and the supporting body along the remained road... To determine the filling body's width along the gob-side remained roadway which is underneath the gob,the authors analyzed the interaction mechanism between the roof and the supporting body along the remained roadway, based on the elastic thin plate theory of the stope roof. The stress state and mechanical response of the filling body along the remained roadway were studied. Specifically, firstly, the supporting pressure of the coal pillar which is on one side of the gob-side remained roadway was deduced.Also, an equation that is used to calculate the width of the balance area in the stress limit state was acquired. Then, an equation that is used to calculate the roof cutting force on one side of the supporting body was obtained. By using FLAC3D, the authors investigated the displacement field and stress field response laws of rock masses around the roadway with different filling body's widths. The results show that with the filling body's width increasing, the supporting ability of the filling body increases.Meanwhile, the rock mass displacement around the roadway and the filling body deformation decrease.The better the filling body's supporting effect is, the higher the roof cutting force will be. When the filling body's width is larger than 3.0 m, its internal bearing ability becomes stable and the filling body's deformation became non-apparent. Finally, analysis shows that the filling body's width should be 2.5 m.Furthermore, the authors conducted field tests in the supply roadway 1204, using high-water materials and acquired expected outcomes. 展开更多
关键词 水位线 身体 宽度 材料 入口 相互作用机制 FLAC3D 薄板理论
下载PDF
Feasibility analysis of gob-side entry retaining on a working face in a steep coal seam 被引量:9
5
作者 Deng Yuehua Wang Shouquan 《International Journal of Mining Science and Technology》 SCIE EI 2014年第4期499-503,共5页
Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in util... Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in utilizing the technology of gob-side entry retaining in steep coal seams is to safely and effectively prevent caving rock blocks from rushing into the gob-side entry by sliding downwards along levels. Using theoretical analysis and field methods, we numerically simulated the mining process on a fully-mechanized face in a steep coal seam. The stress and deformation process of roof strata has been analyzed, and the difficulty of utilizing the technology is considered and combined with practice in a steep working face in Lvshuidong mine. The feasibility of utilizing the technology of gob-side entry retaining in a steep coal seam has been recognised. We propose that roadways along the left lane offshoot body use a speciallymade reinforced steel dense net to build a dense rock face at the lower head. The results show that the lane offshoot branch creates effective roof control, safe conditions for roadway construction workers, and practical application of steeply inclined gob. 展开更多
关键词 急倾斜煤层开采 综采工作面 采空区侧 煤炭资源 开采过程 数值模拟 顶板岩层 施工人员
下载PDF
Control mechanism and technique of floor heave with reinforcing solid coal side and floor corner in gob-side coal entry retaining 被引量:6
6
作者 Chen Yong Bai Jianbiao +3 位作者 Yan Shuai Xu Ying Wang Xiangyu Ma Shuqi 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期832-836,共5页
Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numeric... Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numerical simulation and the field trial.Research results present that bending and folding floor heave is the main factor in the stage of the first panel mining;squeezing and fluidity floor heave plays a great role in the stable stage of gob-side entry retaining;the combination of the former two factors affects mainly the stage of the second mining ahead;abutment pressure is a fundamental contribution to the serious floor heave of gob-side entry retaining,and sides corners of solid coal body are key part in the case of floor heave controlling of gob-side entry retaining.Floor heave of gob-side entry retaining can be significantly controlled by reinforcing sides and corners of solid coal body,and influence rules on the floor heave of gob side entry retaining of sides supporting strength and the bottom bolt orientation in solid coal side are obtained.Research results have been successfully applied in gob-side entry retaining of G20-F23070 face haulage roadway in #2 coal mine of Pingmei Group,and the field observation shows that the proposed technique is an effective way in controlling the floor heave of gob-side entry retaining. 展开更多
关键词 gob-side ENTRY retaining ABUTMENT pressure Forms of FLOOR heave Reinforcing sides of solid COAL SIDE Bolt in a FLOOR CORNER
下载PDF
Study on gob-side entry retaining in fully-mechanized longwall with top-coal caving and its application 被引量:12
7
作者 Su Hai Bai Jianbiao +2 位作者 Yan Shuai Chen Yong Zhang Zizheng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第3期503-510,共8页
Based on the engineering background of gob-side entry retaining in fully-mechanized longwall with top coal caving(GER-FLTC) on N2105 working face of Yuwu coal mine, by adopting the methods of theoretical analysis and ... Based on the engineering background of gob-side entry retaining in fully-mechanized longwall with top coal caving(GER-FLTC) on N2105 working face of Yuwu coal mine, by adopting the methods of theoretical analysis and numerical calculation, the control techniques of surrounding rocks in GER-FLTC working face are studied in this paper. The two main difficulties of stability of surrounding rocks at gob-side retained entry in fully-mechanized longwall working face are the stability control of top coal and control of large deformation of GER-FLTC working face. Interaction mechanical model between roofing and roadside backfilling in GER-FLTC is established and the equations for the calculation of roof-cutting resistance of roadside backfilling are derived. Results of numerical calculation show that the damage zones of top coal can be categorized into the delaminating zone of top coal above the backfilling, tensile damage zone of top coal above the retained roadway and shear damage zone of the upper rib of the solid coal. Stability control of top coal is the critical part to success of GER-FLTC. With consideration of large deformation of surrounding rocks of gob-side retained entry in fully-mechanized longwall, the support technique of‘‘roofing control and wall strengthening'' is proposed where high strength and highly prestressed anchor rods and diagonal tensile anchor cables support are used for top coal, high strength and highly prestressed yielding anchor rod support is used for solid coal and roadside prestressed load-carrying backfilling is constructed by high-water material, in order to maintain the integrity of the top coal, transfer load, high resistance yielding load-carrying of solid coal, roof-cutting of roadside backfilling and support,and to achieve GER-FLTC. Results from this study are successfully applied in engineering practice. 展开更多
关键词 采空区侧 综采 入境 应用 长壁工作面 预应力锚杆 稳定性控制 综放
下载PDF
Spontaneous caving and gob-side entry retaining of thin seam with large inclined angle 被引量:3
8
作者 Zhang Yongqin Tang Jianxin +2 位作者 Xiao Daqiang Sun Lele Zhang Weizhong 《International Journal of Mining Science and Technology》 SCIE EI 2014年第4期441-445,共5页
Based on the research method of combining simulation analysis with field testing by distinct element process UDEC, we have analyzed the roof deformation and failure laws and roadway support technology of gob-side entr... Based on the research method of combining simulation analysis with field testing by distinct element process UDEC, we have analyzed the roof deformation and failure laws and roadway support technology of gob-side entry retaining in a thin seam with a large inclined angle. The results show that during exploitation in seams with large inclined angle, rotational subsidence of the main roof under the gob area is small and can maintain balance, so there is no need to provide artificial permanent support resistance for the main roof near the upper side to control rotational subsidence. Obstructed by the dense scrap rail,waste rock from the immediate roof caving slides from the upper gob area to the lower area and fills it,which strikes a balance between the immediate roof under the goaf after it fractures into large pieces and filling waste rocks. 展开更多
关键词 采空区侧 大倾角 薄煤层 崩落 自燃 巷道支护技术 现场测试 模拟分析
下载PDF
Control of floor heaves with steel pile in gob-side entry retaining 被引量:2
9
作者 Xu Ying Chen Jin Bai Jianbiao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第3期527-534,共8页
A new approach named as steel pile method is innovatively proposed in this study to control severe floor heaves in gob-side entry retaining. It is required that the steel piles be installed in the floor corners with a... A new approach named as steel pile method is innovatively proposed in this study to control severe floor heaves in gob-side entry retaining. It is required that the steel piles be installed in the floor corners with a certain interval before the influence of the dynamic pressure induced by current panel extraction. Using numerical simulation and theoretical analysis, this study investigated the interaction between the steel piles and the floor rocks during the service life of the steel piles, and revealed the mechanism of the steel piles in controlling floor heaves. The effect of the steel pile parameters on the control of floor heaves was presented and elaborated. It is found that the effectiveness of the steel piles in controlling floor heaves can be enhanced with greater installed dip angle, longer length and smaller interval of the steel piles.Compared with traditional methods, e.g., using floor anchor bolts and floor restoration, the advantages using steel pile were successfully defined in terms of controlling effect and economic benefits. It is hoped that the proposed method can contribute to the development of gob-side entry retaining technique. 展开更多
关键词 沿空留巷技术 控制效果 钢桩 底臌 安装倾角 动态压力 数值模拟 相互作用
下载PDF
Study on gob-side entry retaining technique with roadside packing in longwall top-coal caving technology 被引量:3
10
作者 华心祝 《Journal of Coal Science & Engineering(China)》 2004年第1期9-12,共4页
Pointed out some technical difficulties of gob-side entry retaining with roadside packing in longwall top-coal caving technology (LTCT), and analyzed the function mecha-nism of roadside filling body. Theory analysis s... Pointed out some technical difficulties of gob-side entry retaining with roadside packing in longwall top-coal caving technology (LTCT), and analyzed the function mecha-nism of roadside filling body. Theory analysis shows the mechanical properties of high water material fit for the feature of deformation of gob-side entry retaining in LTCT, and gob-side entry retaining in LTCT face is one of effective ways to increase the recovery ra-tio of mining district. 展开更多
关键词 采空区 充填采矿法 崩落开采法 煤矿开采 LTCT 工作面 矿山压力
下载PDF
Mechanical analysis on deformation of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face 被引量:1
11
作者 朱川曲 缪协兴 刘泽 《Journal of Coal Science & Engineering(China)》 2008年第1期24-28,共5页
Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established ... Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established and the calculating formulas of the deformation of the roof,coal wall and filling body were attained.By the mechanical analy- sis to the deformation of the surrounding rock of RPGERFCF,the major factors influencing the deformation of the surrounding rock were found out and the technologic approaches reduced the deformation and enhanced the stability of the surrounding rock were put for- ward.Consequently,the scientific bases were provided for the stability control of the sur- rounding rock of RPGERFCF. 展开更多
关键词 机械分析 岩石 崩落采矿法 采矿技术
下载PDF
Analysis on distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face
12
作者 Zhu Chuanqu Liu Ze +1 位作者 Wang Weijun Zhang Daobing 《Engineering Sciences》 EI 2009年第3期23-27,共5页
The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mecha... The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face under the effect of given deformation of the main roof is analyzed by the damage mechanics theory. And the relationship between distribution of the abutment pressure and thickness of coal seam is explored. The presented result is of great theoretical significance and practical value to the study on stability control of the surrounding rock of road-in packing for gob-side entry retaining in fully-mechanized caving face. 展开更多
关键词 沿空留巷 支承压力 综放面 压力法 包装 煤炭 公路 三维损伤
下载PDF
Comparative Analysis of the Distribution Characteristics of Floor Stress Field between Gob-Side Entry Retaining with Roof Cutting and Conventional Mining
13
作者 Weifeng Xue Chaoyang Liu +3 位作者 Chao Li Yongguang Chen Xiaoping Xi Feng Wang 《Journal of Geoscience and Environment Protection》 2022年第12期17-28,共12页
All coal fields in North China are affected by floor confined water to varying degrees, floor failure and water inrush risk have always been a major problem to baffle coal mining activities. Roof cutting and pressure ... All coal fields in North China are affected by floor confined water to varying degrees, floor failure and water inrush risk have always been a major problem to baffle coal mining activities. Roof cutting and pressure relief and the lack of protective coal pillar can cause the change of floor stress field, leading to the change of the floor failure depth, stress field of floor is the key to determine the depth of floor failure. In order to deeply study the distribution characteristics of floor stress field in gob-side entry retaining mining with roof cutting, taking the 50107 and 50109 working faces of Dongdong Coal Mine in Chenghe as the research objects, the numerical simulation software is used to simulate the floor stress field distribution of gob-side entry retaining mining with roof cutting and conventional mining. The distribution characteristics of the floor stress field of the working face are compared and analyzed under the three modes of conventional mining of reserved coal pillar, the first mining face of gob-side entry retaining with roof cutting and gob-side entry retaining with roof cutting. The results show that the peak stress concentration in front of the working face all occurs at 10 m under the three mining modes. The stress concentration area in front of conventional working face of reserved coal pillar is mainly in the middle of the working face. The stress concentration area in front of the first working face of gob-side entry retaining with roof cutting (50107) is located in the middle of the working face and the side of the working face of the retaining roadway. The stress concentration area of the working face (50109) is mainly in the middle and the two ends of the working face. The order of the peak value of the maximum concentrated stress in front of the working face is conventional working face of reserved coal pillar > the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109). There is a stress reduction zone behind the working face, but there is a stress concentration phenomenon extending to the outside of the roadway, and the stress distribution is obviously different. Conventional working face of reserved coal pillar and the first working face of gob-side retaining with roof cutting (50107) show a double peak form of stress concentration on the outside of the two ends of the roadway, and the peak value of the concentrated stress at the rear of the working face is in the following order: On the side close to the transportation roadway, conventional working face of reserved coal pillar = the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109);on the side close to the return airway, conventional working face of reserved coal pillar > the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109). 展开更多
关键词 Roof Cutting and Pressure Relief gob-Side Entry retaining Floor Stress Field Stress Concentration
下载PDF
切顶沿空留巷充填体—矸石协同承载机理及控制技术研究 被引量:1
14
作者 徐军 孟宁康 柏建彪 《矿业安全与环保》 CAS 北大核心 2024年第1期140-146,共7页
针对深部沿空留巷顶底板移近量大、充填体大变形破坏失稳等问题,采用数值模拟和现场实践相结合的方法,分析了传统沿空留巷和切顶卸压协同承载沿空留巷围岩应力演化规律和变形特征,揭示了切顶沿空留巷充填体—矸石协同承载机理。在此基础... 针对深部沿空留巷顶底板移近量大、充填体大变形破坏失稳等问题,采用数值模拟和现场实践相结合的方法,分析了传统沿空留巷和切顶卸压协同承载沿空留巷围岩应力演化规律和变形特征,揭示了切顶沿空留巷充填体—矸石协同承载机理。在此基础上,以朱庄煤矿Ⅲ635工作面沿空留巷为工程背景,提出了一种巷旁充填体—矸石组合结构体协同承载的切顶卸压沿空留巷技术,建立充填体—矸石协同支撑顶板力学模型、推导出顶板挠度方程,并进行工程应用。数值模拟结果表明:采用切顶卸压协同承载沿空留巷技术后,实体煤帮和充填体的垂直应力峰值分别降低了28.3%、44.4%,巷道顶底板移近量降低了58.2%。现场应用结果表明:采用该技术后,顶底板和两帮移近量分别为382.9、253.6 mm,工作面支架平均支撑力下降了45.3%,有效控制了巷道变形。可为类似条件下沿空留巷围岩控制提供参考。 展开更多
关键词 深部矿井 沿空留巷 顶板预裂 应力转移 协同承载 影响特征
下载PDF
大倾角走向长壁工作面局部充填无煤柱开采理论与技术
15
作者 伍永平 皇甫靖宇 +2 位作者 王红伟 胡博胜 罗生虎 《煤炭学报》 EI CAS CSCD 北大核心 2024年第1期280-297,共18页
大倾角煤层走向长壁采场围岩结构及应力环境异化,工作面不同位置“支架-围岩”系统的构成因素及灾变模式不同,导致工作面安全事故频发、煤炭采出率较低、巷道掘进率高。通过对大倾角采场围岩采动力学行为的分析,提出了大倾角走向长壁工... 大倾角煤层走向长壁采场围岩结构及应力环境异化,工作面不同位置“支架-围岩”系统的构成因素及灾变模式不同,导致工作面安全事故频发、煤炭采出率较低、巷道掘进率高。通过对大倾角采场围岩采动力学行为的分析,提出了大倾角走向长壁工作面局部充填无煤柱开采技术构想,工作面走向推进过程中沿倾向对采空区下部进行局部充填,充填体既与巷旁支护作用形成沿空巷道,取消区段保护煤柱,实现大倾角煤层无煤柱开采,又增大了工作面倾向下部充填压实区长度,加强了工作面“支架-围岩”系统稳定性。根据大倾角走向长壁采场特点,优选确定了大倾角膏体局部充填工艺,设计了大倾角局部充填回采系统、采充工艺。并采用理论分析、模拟实验、数值计算等相结合的方法,分析了局部充填对大倾角走向长壁采场围岩采动力学行为的调节机制。结果表明:充填体影响基本顶岩梁的变形破坏及采场倾向下侧煤岩体承载特征,基本顶、运输巷顶板变形量及运输巷倾向下侧煤岩体所受约束均随充填长度的增大而减小;为防止采空区未充填区悬顶灾害,充填长度不应超过工作面长度的1/3。局部充填体限制了工作面下部区域顶板破断,降低覆岩关键域形成层位,形成稳定的巷帮,减小沿空留巷围岩变形量;同时工作面倾向下部充填区长度增大,中、上部围岩结构不稳定区域的长度缩小,“支架-围岩”系统稳定性提升。充填体改变了采场围岩应力传递路径,承担了部分覆岩载荷,工作面下侧支承压力及超前支承压力均随充填长度的增大而减小,工作面倾向下部充填区域的超前支承压力降幅最大,沿空巷道及工作面应力状态得到改善。大倾角走向长壁工作面局部充填无煤柱开采技术具有提高资源采出率、降低掘进率、缓解采掘接替紧张、加强工作面“支架-围岩”系统稳定性等优势。 展开更多
关键词 大倾角煤层 无煤柱开采 局部充填 沿空留巷 采动应力
下载PDF
千米深井切顶卸压自成巷支护技术及应用
16
作者 郭志飚 王程中 +2 位作者 尹松阳 杨东山 张帅 《煤炭工程》 北大核心 2024年第5期58-62,共5页
为了解决深部复杂条件下的切顶卸压自成巷难题,以红阳三矿703工作面运输巷道为研究对象,从恒阻大变形锚索超前支护、切顶巷内支护、切顶巷旁支护三个方面研究了切顶卸压沿空成巷支护技术,并对现场试验巷道顶板受力以及巷道围岩变形量进... 为了解决深部复杂条件下的切顶卸压自成巷难题,以红阳三矿703工作面运输巷道为研究对象,从恒阻大变形锚索超前支护、切顶巷内支护、切顶巷旁支护三个方面研究了切顶卸压沿空成巷支护技术,并对现场试验巷道顶板受力以及巷道围岩变形量进行了监测。结果表明:在超前工作面实施爆破切顶能够极大降低巷道所受应力,成巷区巷道顶板整体下沉量较小,巷中顶板最大下沉量约385 mm,平均下沉量约280 mm,巷中底鼓最大值545 mm,碎石巷帮无明显侧鼓现象,实体煤帮无明显片帮现象,满足安全和使用要求,巷道围岩变形在可控范围内,留巷效果良好。 展开更多
关键词 千米深井 切顶卸压 沿空留巷 恒阻大变形锚索
下载PDF
贵州沿空留巷支护技术的分析与改进
17
作者 韩森 刘萍 +1 位作者 王沉 康向涛 《贵州大学学报(自然科学版)》 2024年第1期72-77,共6页
针对贵州某煤矿沿空留巷在原有支护条件下,靠上帮一侧顶板以及下帮底角的岩层变形破坏较严重的情况,对巷道支护方式进行改进。利用数值模拟软件,对改进支护后的巷道围岩变形破坏情况进行分析。研究发现:改进支护后的巷道围岩变形破坏情... 针对贵州某煤矿沿空留巷在原有支护条件下,靠上帮一侧顶板以及下帮底角的岩层变形破坏较严重的情况,对巷道支护方式进行改进。利用数值模拟软件,对改进支护后的巷道围岩变形破坏情况进行分析。研究发现:改进支护后的巷道围岩变形破坏情况得到明显改善,改进后的支护方式能够较好地阻滞巷道上帮一侧顶板和下帮底角的岩层严重变形破坏,从而保持巷道围岩的完整性和稳定性,研究可为类似条件矿井沿空留巷的支护方式提供参考。 展开更多
关键词 沿空留巷 围岩变形破坏 数值模拟 支护改进
下载PDF
深厚冲积层薄基岩条件下沿空留巷支护技术研究
18
作者 王应德 荣阳阳 +1 位作者 和平 陈新明 《煤炭技术》 CAS 2024年第2期17-22,共6页
为解决某矿16041工作面原支护方案沿空留巷变形大、破坏严重难题,提出了顶板采用“16#槽钢梁+注浆锚索”、采空区侧采用“36U型钢+注浆锚杆”不对称耦合支护优化方案,基于理论分析研究围岩结构破坏形式,通过单元荷载法计算了留巷顶板与... 为解决某矿16041工作面原支护方案沿空留巷变形大、破坏严重难题,提出了顶板采用“16#槽钢梁+注浆锚索”、采空区侧采用“36U型钢+注浆锚杆”不对称耦合支护优化方案,基于理论分析研究围岩结构破坏形式,通过单元荷载法计算了留巷顶板与采空区侧围岩应力,最后开展工业性应用,验证优化后方案的合理性。研究表明:优化后支护方案顶板和采空区侧计算单元面荷载分别为351.85 kPa和206.53 kPa;注浆锚索和注浆锚杆承载力分别为263.89 kN和199.08 kN,均小于注浆锚索(锚杆)极限承载力。根据对留巷数据监测,最大顶板下沉量为35.6 mm,较原支护方案减小了1.40倍;采空区侧最大移近量为29.6 mm,与较原支护方案减小了4.13倍;最大注浆锚索承载力为253 kN,与理论计算值误差为4.1%;最大注浆锚杆承载力为174 kN,与理论计算值误差为12.6%。位移量与支护承载力均在工程允许范围内,优化后方案支护效果良好。 展开更多
关键词 沿空留巷 U型钢+注浆锚杆 槽钢梁+注浆锚索 极限承载力
下载PDF
基于力学模型构建的留巷切顶高度确定与围岩控制技术
19
作者 辛亚军 吴春浩 +2 位作者 杨俊鹏 田孟含 祝忍忍 《煤炭工程》 北大核心 2024年第1期119-126,共8页
以顺和煤矿2401运输巷道沿空留巷为工程背景,分析巷道围岩结构特征,基于巷道局部空间结构稳定性,分别构建了沿空留巷未切顶与切顶力学结构模型,并以巷道不同切顶高度进行物理相似模拟试验。结果表明:巷旁采空区切落的矸石增加对关键块... 以顺和煤矿2401运输巷道沿空留巷为工程背景,分析巷道围岩结构特征,基于巷道局部空间结构稳定性,分别构建了沿空留巷未切顶与切顶力学结构模型,并以巷道不同切顶高度进行物理相似模拟试验。结果表明:巷旁采空区切落的矸石增加对关键块的支撑力,同时弱化关键块对直接顶悬壁端部挤压,巷旁支护阻力减少35.78%;随着切顶高度增加,巷道顶板采空区侧端部悬臂由F型缓慢过渡到大I型,同时大保护结构具有向上平移趋势,相比于未切顶1巷,4 cm切顶2巷、8 cm切顶3巷与16 cm切顶4巷叠加应力峰值分别下降9.38%,28.13%,25.00%。结合巷道顶板岩性,最终确定切顶高度为8.2 m,留巷段采用三列单体液压支柱作巷旁支护,长短锚索超前补强,巷道围岩稳定,较好满足使用要求。 展开更多
关键词 沿空留巷 顶板结构 切顶卸压 巷旁支护
下载PDF
沿空留巷密集钻孔切顶机理及关键参数确定方法
20
作者 刘少伟 李小鹏 +3 位作者 朱雯清 付孟雄 张定山 彭博 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第2期23-33,共11页
为实现密集钻孔切顶条件下沿空留巷顶板结构安全稳定,研究正常情况与密集钻孔条件下顶板岩层结构受力状况,基于岩石断裂理论和弹性理论分析回采前后顶板密集钻孔孔间围岩受力分布及其破断过程,明确密集钻孔切顶机理及相邻钻孔的孔间集... 为实现密集钻孔切顶条件下沿空留巷顶板结构安全稳定,研究正常情况与密集钻孔条件下顶板岩层结构受力状况,基于岩石断裂理论和弹性理论分析回采前后顶板密集钻孔孔间围岩受力分布及其破断过程,明确密集钻孔切顶机理及相邻钻孔的孔间集中应力相互作用机制,推导工作面端头弧形三角板结构巷道侧边界密集钻孔孔间围岩的拉剪应力计算公式。在此基础上,分析不同参数对孔间围岩所受拉剪应力的影响作用,提出沿空留巷密集钻孔切顶关键参数确定方法。研究表明:密集钻孔主要通过回采前后钻孔周围应力条件改变来增加钻孔围岩拉剪应力集中程度,引起孔间裂隙扩张联通,形成切缝线破断关键岩层。回采前钻孔主要受水平挤压应力影响,回采后钻孔受力逐渐转变为采空区顶板回转下沉产生的拉剪应力为主,钻孔孔间围岩状态随之由孔间围岩弱化阶段过渡到孔壁裂纹成形阶段,再转变为孔间围岩破断阶段。密集钻孔孔间围岩所受拉剪应力大小主要取决于关键岩层厚度及钻孔孔径与孔间距之比,与钻孔高度及间距成负相关,与角度及直径正相关。据此提出了密集钻孔关键参数确定方法,并根据龙滩矿3124 N工作面坚硬顶板条件设计了密集钻孔切顶留巷方案,确定钻孔长度为8.3 m,角度为15°,钻孔直径为48 mm,间距为500 mm。留巷后巷道顶帮变形可控且整体稳定性较好,由此可证明密集钻孔布置参数较为合理,密集钻孔关键参数确定方法有效可行。 展开更多
关键词 沿空留巷 切顶留巷 密集钻孔 弧形三角板 孔间应力集中
下载PDF
上一页 1 2 72 下一页 到第
使用帮助 返回顶部