This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensi...This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices.展开更多
All coal fields in North China are affected by floor confined water to varying degrees, floor failure and water inrush risk have always been a major problem to baffle coal mining activities. Roof cutting and pressure ...All coal fields in North China are affected by floor confined water to varying degrees, floor failure and water inrush risk have always been a major problem to baffle coal mining activities. Roof cutting and pressure relief and the lack of protective coal pillar can cause the change of floor stress field, leading to the change of the floor failure depth, stress field of floor is the key to determine the depth of floor failure. In order to deeply study the distribution characteristics of floor stress field in gob-side entry retaining mining with roof cutting, taking the 50107 and 50109 working faces of Dongdong Coal Mine in Chenghe as the research objects, the numerical simulation software is used to simulate the floor stress field distribution of gob-side entry retaining mining with roof cutting and conventional mining. The distribution characteristics of the floor stress field of the working face are compared and analyzed under the three modes of conventional mining of reserved coal pillar, the first mining face of gob-side entry retaining with roof cutting and gob-side entry retaining with roof cutting. The results show that the peak stress concentration in front of the working face all occurs at 10 m under the three mining modes. The stress concentration area in front of conventional working face of reserved coal pillar is mainly in the middle of the working face. The stress concentration area in front of the first working face of gob-side entry retaining with roof cutting (50107) is located in the middle of the working face and the side of the working face of the retaining roadway. The stress concentration area of the working face (50109) is mainly in the middle and the two ends of the working face. The order of the peak value of the maximum concentrated stress in front of the working face is conventional working face of reserved coal pillar > the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109). There is a stress reduction zone behind the working face, but there is a stress concentration phenomenon extending to the outside of the roadway, and the stress distribution is obviously different. Conventional working face of reserved coal pillar and the first working face of gob-side retaining with roof cutting (50107) show a double peak form of stress concentration on the outside of the two ends of the roadway, and the peak value of the concentrated stress at the rear of the working face is in the following order: On the side close to the transportation roadway, conventional working face of reserved coal pillar = the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109);on the side close to the return airway, conventional working face of reserved coal pillar > the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109).展开更多
Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side en...Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side entry retaining are obtained via physical simulation and theoretical analysis,in which the scope of disturbed strata is enlarged from main roof to fracture zone.The experiment reveals that as a working face advances,roof strata sequentially collapse from bottom to top and produce multiple disturbances to gob-side entry retaining.Key strata among the overlying strata control each collapse.Main roof subsidence is divided into three stages:flexure subsidence prior to rupture,rotational subsidence during rupture and compressive subsidence after rupture.The amounts of deformation evident in each of the three stages are 15%,55%and 30%,respectively.After the master stratum collapses,main roof subsidence approaches its maximum value.The final span of the key stratum determines the moment and cycling of gob-side entry retaining disturbances.Main roof subsidence influences the load on the filling wall.The sequential roof collapse of overlying strata results in fluctuations in the gob-side entry retaining deformation.Calculation formulae for the final span of the key stratum and the filling wall load are obtained via theoretical analysis.A control method for the stability of the gob-side entry retaining’s surrounding rock is proposed,which includes 3 measures:a“dual-layer”proactive anchorage support,roadside filling with dynamic strength matching and auxiliary support during disturbance.Finally,the gob-side entry retaining of the Xiaoqing mine E1403 working face is presented as an engineering case capable of verifying the validity of the research conclusions.展开更多
Based on the engineering background of gob-side entry retaining in fully-mechanized longwall with top coal caving(GER-FLTC) on N2105 working face of Yuwu coal mine, by adopting the methods of theoretical analysis and ...Based on the engineering background of gob-side entry retaining in fully-mechanized longwall with top coal caving(GER-FLTC) on N2105 working face of Yuwu coal mine, by adopting the methods of theoretical analysis and numerical calculation, the control techniques of surrounding rocks in GER-FLTC working face are studied in this paper. The two main difficulties of stability of surrounding rocks at gob-side retained entry in fully-mechanized longwall working face are the stability control of top coal and control of large deformation of GER-FLTC working face. Interaction mechanical model between roofing and roadside backfilling in GER-FLTC is established and the equations for the calculation of roof-cutting resistance of roadside backfilling are derived. Results of numerical calculation show that the damage zones of top coal can be categorized into the delaminating zone of top coal above the backfilling, tensile damage zone of top coal above the retained roadway and shear damage zone of the upper rib of the solid coal. Stability control of top coal is the critical part to success of GER-FLTC. With consideration of large deformation of surrounding rocks of gob-side retained entry in fully-mechanized longwall, the support technique of‘‘roofing control and wall strengthening'' is proposed where high strength and highly prestressed anchor rods and diagonal tensile anchor cables support are used for top coal, high strength and highly prestressed yielding anchor rod support is used for solid coal and roadside prestressed load-carrying backfilling is constructed by high-water material, in order to maintain the integrity of the top coal, transfer load, high resistance yielding load-carrying of solid coal, roof-cutting of roadside backfilling and support,and to achieve GER-FLTC. Results from this study are successfully applied in engineering practice.展开更多
基金Project(WPUKFJJ2019-19)supported by the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining,ChinaProject(51974317)supported by the National Natural Science Foundation of China。
文摘This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices.
文摘All coal fields in North China are affected by floor confined water to varying degrees, floor failure and water inrush risk have always been a major problem to baffle coal mining activities. Roof cutting and pressure relief and the lack of protective coal pillar can cause the change of floor stress field, leading to the change of the floor failure depth, stress field of floor is the key to determine the depth of floor failure. In order to deeply study the distribution characteristics of floor stress field in gob-side entry retaining mining with roof cutting, taking the 50107 and 50109 working faces of Dongdong Coal Mine in Chenghe as the research objects, the numerical simulation software is used to simulate the floor stress field distribution of gob-side entry retaining mining with roof cutting and conventional mining. The distribution characteristics of the floor stress field of the working face are compared and analyzed under the three modes of conventional mining of reserved coal pillar, the first mining face of gob-side entry retaining with roof cutting and gob-side entry retaining with roof cutting. The results show that the peak stress concentration in front of the working face all occurs at 10 m under the three mining modes. The stress concentration area in front of conventional working face of reserved coal pillar is mainly in the middle of the working face. The stress concentration area in front of the first working face of gob-side entry retaining with roof cutting (50107) is located in the middle of the working face and the side of the working face of the retaining roadway. The stress concentration area of the working face (50109) is mainly in the middle and the two ends of the working face. The order of the peak value of the maximum concentrated stress in front of the working face is conventional working face of reserved coal pillar > the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109). There is a stress reduction zone behind the working face, but there is a stress concentration phenomenon extending to the outside of the roadway, and the stress distribution is obviously different. Conventional working face of reserved coal pillar and the first working face of gob-side retaining with roof cutting (50107) show a double peak form of stress concentration on the outside of the two ends of the roadway, and the peak value of the concentrated stress at the rear of the working face is in the following order: On the side close to the transportation roadway, conventional working face of reserved coal pillar = the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109);on the side close to the return airway, conventional working face of reserved coal pillar > the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109).
基金Project(51404251)supported by the National Natural Science Foundation of ChinaProject(BK20140198)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(PPZY2015A046)supported by the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side entry retaining are obtained via physical simulation and theoretical analysis,in which the scope of disturbed strata is enlarged from main roof to fracture zone.The experiment reveals that as a working face advances,roof strata sequentially collapse from bottom to top and produce multiple disturbances to gob-side entry retaining.Key strata among the overlying strata control each collapse.Main roof subsidence is divided into three stages:flexure subsidence prior to rupture,rotational subsidence during rupture and compressive subsidence after rupture.The amounts of deformation evident in each of the three stages are 15%,55%and 30%,respectively.After the master stratum collapses,main roof subsidence approaches its maximum value.The final span of the key stratum determines the moment and cycling of gob-side entry retaining disturbances.Main roof subsidence influences the load on the filling wall.The sequential roof collapse of overlying strata results in fluctuations in the gob-side entry retaining deformation.Calculation formulae for the final span of the key stratum and the filling wall load are obtained via theoretical analysis.A control method for the stability of the gob-side entry retaining’s surrounding rock is proposed,which includes 3 measures:a“dual-layer”proactive anchorage support,roadside filling with dynamic strength matching and auxiliary support during disturbance.Finally,the gob-side entry retaining of the Xiaoqing mine E1403 working face is presented as an engineering case capable of verifying the validity of the research conclusions.
基金supported by Chinese National Programs for Fundamental Research and Development(973 Program)(2013CB227905)Natural Science Foundation of Jiangsu Province of China(BK20140210)
文摘Based on the engineering background of gob-side entry retaining in fully-mechanized longwall with top coal caving(GER-FLTC) on N2105 working face of Yuwu coal mine, by adopting the methods of theoretical analysis and numerical calculation, the control techniques of surrounding rocks in GER-FLTC working face are studied in this paper. The two main difficulties of stability of surrounding rocks at gob-side retained entry in fully-mechanized longwall working face are the stability control of top coal and control of large deformation of GER-FLTC working face. Interaction mechanical model between roofing and roadside backfilling in GER-FLTC is established and the equations for the calculation of roof-cutting resistance of roadside backfilling are derived. Results of numerical calculation show that the damage zones of top coal can be categorized into the delaminating zone of top coal above the backfilling, tensile damage zone of top coal above the retained roadway and shear damage zone of the upper rib of the solid coal. Stability control of top coal is the critical part to success of GER-FLTC. With consideration of large deformation of surrounding rocks of gob-side retained entry in fully-mechanized longwall, the support technique of‘‘roofing control and wall strengthening'' is proposed where high strength and highly prestressed anchor rods and diagonal tensile anchor cables support are used for top coal, high strength and highly prestressed yielding anchor rod support is used for solid coal and roadside prestressed load-carrying backfilling is constructed by high-water material, in order to maintain the integrity of the top coal, transfer load, high resistance yielding load-carrying of solid coal, roof-cutting of roadside backfilling and support,and to achieve GER-FLTC. Results from this study are successfully applied in engineering practice.