期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Surrounding rock control of gob-side entry driving with narrow coal pillar and roadway side sealing technology in Yangliu Coal Mine 被引量:7
1
作者 Zha Wenhua Shi Hao +1 位作者 Liu San Kang Changhao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第5期819-823,共5页
Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation chara... Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition. 展开更多
关键词 Narrow coal PILLAR gob-side ENTRY driving SURROUNDING rock control ROADWAY SIDE sealing technology
下载PDF
Cable-truss supporting system for gob-side entry driving in deep mine and its application 被引量:3
2
作者 Yin Qian Jing Hongwen +3 位作者 Dai Dapeng Zhu Tantan Zhao Honghui Meng Bo 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期885-893,共9页
In order to solve the large deformation controlling problem for surrounding rock of gob-side entry driving under common cable anchor support in deep mine, site survey, physical modeling experiment, numerical simulatio... In order to solve the large deformation controlling problem for surrounding rock of gob-side entry driving under common cable anchor support in deep mine, site survey, physical modeling experiment, numerical simulation and field measurement were synthetically used to analyze the deformation and failure characteristics of surrounding rock. Besides, applicability analysis, prestress field distribution characteristics of surrounding rock and the control effect on large deformation of surrounding rock were also further studied for the gob-side entry driving in deep mine using the cable-truss supporting system. The results show that, first, compared with no support and traditional bolt anchor support, roof cable-truss system can effectively restrain the initiation and propagation of tensile cracks in the roof surrounding rock and arc shear cracks in the two sides, moreover, the broken development of surrounding rock, roof separation and extrusion deformation between the two sides of the roadway are all controlled; second, a prestressed belt of trapezoidal shape is generated in the surrounding rock by the cable-truss supporting system, and the prestress field range is wide. Especially, the prestress concentration belt in the shallow surrounding rock can greatly improve the anchoring strength and deformation resisting capability of the rock stratum;third, an optimized support system of ‘‘roof and side anchor net beam, roof cable-truss supporting system and anchor cable of the narrow coal pillar" was put forward, and the support optimization design and field industrial test were conducted for the gob-side entry driving of the working face 5302 in Tangkou Mine, from which a good supporting effect was obtained. 展开更多
关键词 Deep mine gob-side entry driving Cable-truss supporting system Deformation and failure STABILITY
下载PDF
Failure laws of narrow pillar and asymmetric control technique of gob-side entry driving in island coal face 被引量:16
3
作者 Yang Jiping Cao Shenggen Li Xuehua 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期271-276,共6页
In allusion to the problems of complex stress distribution in the surrounding rock and deformation failure laws, as well as the difficulty in roadway supporting of the gob-side entry driving in the island coal face, 2... In allusion to the problems of complex stress distribution in the surrounding rock and deformation failure laws, as well as the difficulty in roadway supporting of the gob-side entry driving in the island coal face, 2107 face in Chengjiao Colliery is researched as an engineering case. Through physical mechanical test of rock, theoretical and numerical simulation analyses of rock, the analysis model of the roadway overlying strata structure was established, and its parameters quantified. To reveal the deformation law of the surrounding rock, the stability of the overlying strata structure was studied before, during and after the roadway driving. According to the field conditions, the stress distribution in coal pillar was quantified, and the surrounding rock deformation feature studied with different widths of the pillars in gob-side entry driving. Finally, the pillar width of 4 m was considered as the most reasonable. The research results show that there is great difference in support conditions among roadway roof, entity coal side and narrow pillar side. Besides, the asymmetric control technique for support of the surrounding rock was proposed. The asymmetric control technique was proved to be reasonable by field monitoring, support by bolt-net, steel ladder and steel wire truss used in narrow pillar side. 展开更多
关键词 Island coal face gob-side entry driving Narrow pillar Asymmetric control
下载PDF
Stability of coal pillar in gob-side entry driving under unstable overlying strata and its coupling support control technique 被引量:11
4
作者 Yuan Zhang Zhijun Wan +4 位作者 Fuchen Li Changbing Zhou Bo Zhang Feng Guo Chengtan Zhu 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期204-210,共7页
Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to... Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to analyze the inner stress distribution and its evolution regularity, as well as the deformation characteristics of narrow coal pillar in gob-side entry driving, in the whole process from entry driving of last working face to the present working face mining. A new method of narrow coal pillar control based on the triune coupling support technique (TCST), which includes that high-strength prestressed thread steel bolt is used to strain the coal on the goaf side, and that short bolt to control the integrity of global displacement zone in coal pillar on the entry side, and that long grouting cable to fix anchor point to constrain the bed separation between global displacement zone and fixed zone, is thereby generated and applied to the field production. The result indicates that after entry excavating along the gob under unstable overlying strata, the supporting structure left on the gob side of narrow coal pillar is basically invalid to maintain the coal-pillar stability, and the large deformation of the pillar on the gob side is evident. Except for the significant dynamic pressure appearing in the coal mining of last working face and overlying strata stabilizing process, the stress variation inside the coal pillar in other stages are rather steady, however, the stress expansion is obvious and the coal pillar continues to deform. Once the gob-side entry driving is completed, a global displacement zone on the entry side appears in the shallow part of the pillar, whereas, a relatively steady fixed zone staying almost still in gob-side entry driving and present working face mining is found in the deep part of the pillar. The application of TCST can not only avoid the failure of pillar supporting structure, but exert the supporting capacity of the bolting structure left in the pillar of last sublevel entry, thus to jointly maintain the stability of coal pillar. 展开更多
关键词 gob-side entry driving Unstable surrounding rock Coal pillar stability Surrounding rock control Coupling support
下载PDF
Stress and deformation analysis of gob-side pre-backfill driving procedure of longwall mining:a case study 被引量:1
5
作者 Rui Wu Penghui Zhang +2 位作者 Pinnaduwa H.S.W.Kulatilake Hao Luo Qingyuan He 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第6期1351-1370,共20页
At present,non-pillar entry protection in longwall mining is mainly achieved through either the gob-side entry retaining(GER)procedure or the gob-side entry driving(GED)procedure.The GER procedure leads to difficultie... At present,non-pillar entry protection in longwall mining is mainly achieved through either the gob-side entry retaining(GER)procedure or the gob-side entry driving(GED)procedure.The GER procedure leads to difficulties in maintaining the roadway in mining both the previous and current panels.A narrow coal pillar about 5-7 m must be left in the GED procedure;therefore,it causes permanent loss of some coal.The gob-side pre-backfill driving(GPD)procedure effectively removes the wasting of coal resources that exists in the GED procedure and finds an alternative way to handle the roadway maintenance problem that exists in the GER procedure.The FLAC^(3D) software was used to numerically investigate the stress and deformation distributions and failure of the rock mass surrounding the previous and current panel roadways during each stage of the GPD procedure which requires"twice excavation and mining".The results show that the stress distribution is slightly asymmetric around the previous panel roadway after the"primary excavation".The stronger and stiffer backfill compared to the coal turned out to be the main bearing body of the previous panel roadway during the"primary mining".The highest vertical stresses of 32.6 and 23.1 MPa,compared to the in-situ stress of 10.5 MPa,appeared in the backfill wall and coal seam,respectively.After the"primary mining",the peak vertical stress under the coal seam at the floor level was slightly higher(18.1 MPa)than that under the backfill(17.8 MPa).After the"secondary excavation",the peak vertical stress under the coal seam at the floor level was slightly lower(18.7 MPa)than that under the backfill(19.8 MPa);the maximum floor heave and maximum roof sag of the current panel roadway were 252.9 and 322.1 mm,respectively.During the"secondary mining",the stress distribution in the rock mass surrounding the current panel roadway was mainly affected by the superposition of the front abutment pressure from the current panel and the side abutment pressure from the previous panel.The floor heave of the current panel roadway reached a maximum of 321.8 mm at 5 m ahead of the working face;the roof sag increased to 828.4 mm at the working face.The peak abutment pressure appeared alternately in the backfill and the coal seam during the whole procedure of"twice excavation and mining"of the GPD procedure.The backfill provided strong bearing capacity during all stages of the GPD procedure and exhibited reliable support for the roadway.The results provide scientific insight for engineering practice of the GPD procedure. 展开更多
关键词 gob-side pre-backfill driving procedure Floor heave Roadway stability Stress distribution Abutment pressure
下载PDF
深井高应力切顶卸压沿空掘巷围岩控制技术 被引量:39
6
作者 别小飞 王文 +3 位作者 唐世界 李化敏 刘世峰 张广杰 《煤炭科学技术》 CAS CSCD 北大核心 2020年第9期173-179,共7页
为解决矿井采掘接替紧张,沿空掘进的巷道变形严重、支护困难等问题,以赵固一矿为工程背景,提出了超前预裂切顶卸压沿空掘巷技术。基于切顶卸压沿空掘巷技术原理,对沿空掘巷围岩所受力学环境进行理论分析,确定了超前预裂切顶卸压技术中... 为解决矿井采掘接替紧张,沿空掘进的巷道变形严重、支护困难等问题,以赵固一矿为工程背景,提出了超前预裂切顶卸压沿空掘巷技术。基于切顶卸压沿空掘巷技术原理,对沿空掘巷围岩所受力学环境进行理论分析,确定了超前预裂切顶卸压技术中爆破、装药及沿空掘巷支护等相关技术参数,并在现场进行了工业性试验。试验结果表明:超前预裂切顶卸压沿空掘巷技术能够人为预裂成缝,切断巷道顶板与煤柱帮顶板之间的联系,改善沿空掘巷力学环境,确保其顶板结构整体稳定;在工作面回采巷道实施预裂爆破切顶卸压技术对相邻工作面沿空掘巷起到良好的卸压效果,巷道顶底板相对移近量为60~180 mm,两帮相对移近量为25~80 mm,锚索的载荷压力最大值为24 MPa,掘进过程中巷道围岩压力变小,有效抑制了巷道变形,支护质量显著改善。切顶卸压沿空掘巷技术在赵固一矿的应用使采掘接替紧张等问题得到有效解决。 展开更多
关键词 切顶卸压 沿空掘巷 围岩控制 巷道变形
下载PDF
Layout and support technology of entry for pillar face 被引量:1
7
作者 Wang Jianli Xu Ying +2 位作者 Li Wenfeng Wang Xiangyu Bai Jianbiao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期877-884,共8页
In order to improve the recovery rate of coal, some mines have begun to recover the residual protective pillars in the form of short wall faces. However, it is difficult to control stability of the haulage entry and t... In order to improve the recovery rate of coal, some mines have begun to recover the residual protective pillars in the form of short wall faces. However, it is difficult to control stability of the haulage entry and the ventilating entry under the mining influences of the pillar face and the two side faces. Thus the 4311 face, which was designed to recover the 57 m wide residual protective pillar in Guojiashan Coal Mine,was taken as engineering background. Distribution law of stress and plastic zone in the residual protective pillar was analyzed using the numerical simulation. Then the gob-side entry driving technology was proposed to layout the entries for the pillar face. Based on the analysis of stress distribution and deformation characteristics of surrounding rocks in gob-side entry driving with different width of narrow pillars, the width of the narrow pillar of the entries in the 4311 face was decided to be 4 m. In order to control stability of the gob-side entry driving, the mechanical model of the main roof was established and deformation characteristic of surrounding rock was analyzed. Then the bolt support technology with high strength and high pre-tightening force was proposed for entry support. Especially, the hydraulic expansion bolts were used to support the narrow pillar rib. The engineering results show that the width of the narrow pillar is reasonable and the entry support technology is effective. The research achievement can provide some references to pillar recovery for other coal mines. 展开更多
关键词 Pillar recovery gob-side entry driving STABILITY Bolt support Hydraulic expansion bolt
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部