The present study examines the results of the researches related to the gob bulking factor carried out at home and abroad.A mathematical function of a three-dimensional gob bulking factor is described based on a three...The present study examines the results of the researches related to the gob bulking factor carried out at home and abroad.A mathematical function of a three-dimensional gob bulking factor is described based on a three-dimensional gob model.The method of taking value for interstice and permeability ratios is also proposed.The law of air leakage of fully mechanized top coal is researched in this study.The results show that the speed of air flow near the upper and lower crossheadings is higher than that in the central section of the gob at the same distance from the working face.When the amount of air at the working face exceeds a critical amount,the width of the spontaneous combustion zone in the upper and lower crossheadings is also larger than that in the central section.In this situation,the key is preventing the coal left in the upper and lower crossheadings from self-igniting.Reducing the amount of air at the working face can decrease the width of the spontaneous combustion zone,especially the width near the upper and lower crossheadings.This also moves the spontaneous combustion zone in the direction of the working face.It can prevent the coal in the gob from self-igniting by making the coal left in the crossheadings to be inert and by effectively controlling the amount of air at the working face.展开更多
To discuss the domino instability effect and large area roof falling and roof accidents of surrounding rockcoal pillars in a room-and-pillar gob,the equilibrium equation for a roof-coal pillar-floor system with the in...To discuss the domino instability effect and large area roof falling and roof accidents of surrounding rockcoal pillars in a room-and-pillar gob,the equilibrium equation for a roof-coal pillar-floor system with the influence of mining floor was developed based on the engineering conditions of the surrounding rock in a room-and-pillar gob in the 3^(-2)coal seam of Tanggonggou mine.The conditions of system instability and the relationship between system stability and system stiffness were analyzed from an energetic point of view.Numerical simulation using the discrete element software UDEC was also carried out to simulate conditions causing the domino effect on surrounding rock-coal pillars in a 3^(-2)room-and-pillar gob.The results show that:if we want the system to destabilize,the collective energy in roof-and-floor must be larger than that in the coal pillar.When the stiffness of the coal pillars and the roof-and-floor are both greater than zero,the system is stable.When the stiffness of the coal pillars is negative but the summed stiffness of the coal pillars and roof-and-floor is larger than or equal to zero,the system is statically destroyed.When the sum of the coal pillars and the roof-floor stiffness is negative,the system suffers from severe damages.For equal advance distances of the coal mining face,the wider coal pillars can reduce the probability of domino type instability.Conversely,the smaller width pillars can increase the instability probability.Domino type instability of surrounding rock-coal pillars is predicted to be unlikely when the width of coal pillars is not less than 8 m.展开更多
The techniques of stress relief mining in low-permeability coal seams and pillarless gob side retained roadway entry using Y-type ventilation and gas drainage systems were developed to control gas outbursts and applie...The techniques of stress relief mining in low-permeability coal seams and pillarless gob side retained roadway entry using Y-type ventilation and gas drainage systems were developed to control gas outbursts and applied successfully. However, as the mining depth increasing, parts of the gas drainage system are not suitable for mines with high gas emissions. Because larger mining depths cause higher ground stresses, it becomes extremely difficult to maintain long gob side roadways. The greater deformation suffered by the roadway is not favorable lor borehole drilling for continuous gas drainage. To solve these problems, Y-type ventilation and gas drainage systems installed from a roof roadway were designed for drainage optimization. This system was designed based on a gas-enrichment zone analysis developed from mining the 11-2 coal seam in the Zhuji Mine at Huainan, Anhui Province, China. The method of Y-type gas extraction from different mine areas was applied to the panel 1112(1) in the Zhuji Mine. The absolute gas emission rate was up to 116.3 m^3/min with an average flow of 69.1 m^3/min at an average drainage concentration of nearly 85 %. After the Y-type method was adopted, the concentration of gas in the return air was 0.15 %-0.64 %, averaging 0.39 % with a ventilation rate of 2100-2750 m^3/min. The gas management system proved to be efficient, and the effective gas control allowed safe production to continue .展开更多
The explosive gases CO and C2H4, released mainly flammable gases during the process of coal self-ignition, are of the most important ingredients of the multi-component gases in goal areas, along with CH4. We have dete...The explosive gases CO and C2H4, released mainly flammable gases during the process of coal self-ignition, are of the most important ingredients of the multi-component gases in goal areas, along with CH4. We have determined some of the parame- ters of explosive properties of the one-component gases CH4, CO and C2H4 using an explosive trial device of polybasic explosive gas mixtures and emphasized particularly the effect on the limits of explosive concentration of the binary explosive mixed gases CH4+CO, CH4+C2H4, as a function of the amount of CO, C2H4 and inert flame resisting gases (N2, CO2). The experimental results show that the effect of inert gases on the explosive limits of mixed gases, given the property of explosive gas, is obvious: the inert gases (N2, CO2) possess some inhibitory effects on the explosion of the multi-component explosive gas mixtures. The results will provide some experimental support to suppress the occurrence of the gas explosions in goaf areas and provide some directions for designing explosion-proof electric equipment and fire arresters.展开更多
The variation of the stress in the bolted surrounding rocks structure of the roadway driven along goaf in a fully mechanized top coal caving face with moderate stable conditions are studied by using numerical calculat...The variation of the stress in the bolted surrounding rocks structure of the roadway driven along goaf in a fully mechanized top coal caving face with moderate stable conditions are studied by using numerical calculation. The essential deformation characteristics of the surrounding rocks in this kind of roadway are obtained and the key technology of bolting support used under these conditions is put forward.展开更多
A numerical-model-based approach was recently developed for estimating the changes in both the horizontal and vertical loading conditions induced by an approaching longwall face.In this approach, a systematic procedur...A numerical-model-based approach was recently developed for estimating the changes in both the horizontal and vertical loading conditions induced by an approaching longwall face.In this approach, a systematic procedure is used to estimate the model's inputs.Shearing along the bedding planes is modeled with ubiquitous joint elements and interface elements.Coal is modeled with a newly developed coal mass model.The response of the gob is calibrated with back analysis of subsidence data and the results of previously published laboratory tests on rock fragments.The model results were verified with the subsidence and stress data recently collected from a longwall mine in the eastern United States.展开更多
The stress path characteristics of surrounding rock in the formation of gob were analyzed and the unloading was solved. Taking Chengchao Iron Mine as the engineering background, the model for analyzing the instability...The stress path characteristics of surrounding rock in the formation of gob were analyzed and the unloading was solved. Taking Chengchao Iron Mine as the engineering background, the model for analyzing the instability of deep gob was established based on the mechanism of stress relief in deep mining.The energy evolution law was analyzed by introducing the local energy release rate index(LERR), and the energy criterion of the instability of surrounding rock was established based on the cusp catastrophe theory. The results show that the evolution equation of the local energy release of the surrounding rock is a quartic function with one unknown and the release rate increases gradually during the mining process.The calculation results show that the gob is stable. The LERR per unit volume of the bottom structure is relatively smaller which means that the stability is better. The LERR distribution showed that there was main energy release in the horizontal direction and energy concentration in the vertical direction which meets the characteristics of deep mining. In summary, this model could effectively calculate the stability of surrounding rock in the formation of gob. The LERR could reflect the dynamic process of energy release,transfer and dissipation and that provided an important reference for the study of the stability of deep mined out area.展开更多
Based on the construction project of the Changjiashan tunnel of the freeway,the variety rule of surrounding rock masses of the tunnel through the gob of coalmine wasstudied by using of finite element methed(FEM).The s...Based on the construction project of the Changjiashan tunnel of the freeway,the variety rule of surrounding rock masses of the tunnel through the gob of coalmine wasstudied by using of finite element methed(FEM).The status of the stress and strain,thevariety of the plastic area were simulated in the whole rock mass before and after thetunnel was excavated.The characters of stress and deformation of surrounding rockmasses were analyzed when the tunnel was built.It concluded from the numerical simula-tion that the influence on the tunneling is great when the tunnel passing through the gob ofcoalmine is excavated,and the relative measures should be taken.展开更多
Underground coal mining in the U.S. is conducted in numerous regions where previous workings exist above and/or below an actively mined seam. Miners know that overlying or underlying fully extracted coal areas, also k...Underground coal mining in the U.S. is conducted in numerous regions where previous workings exist above and/or below an actively mined seam. Miners know that overlying or underlying fully extracted coal areas, also known as gob regions, can result in abutment stresses that affect the active mining. If there was no full extraction, and the past mining consists entirely of intact pillars, the stresses on the active seam are usually minimal. However, experience has shown that in some situations there has been sufficient yielding in overlying or underlying pillar systems to cause stress transfer to the adjoining larger pillars or barriers, which in turn, transfer significant stresses onto the workings of the active seam. In other words, the overlying or underlying pillar system behaves as a ‘‘pseudo gob." The presence of a pseudo gob is often unexpected, and the consequences can be severe. This paper presents several case histories, summarized briefly below, that illustrate pseudo gob phenomenon:(1) pillar rib degradation at a West Virginia mine at 335 m depth that contributed to a rib roll fatality,(2) pillar rib deterioration at a Western Kentucky mine at 175 m depth that required pillar size adjustment and installation of supplemental bolting,(3) roof deterioration at an eastern Kentucky mine at 400 m depth that stopped mine advance and required redirecting the section development,(4) coal burst on development at an eastern Kentucky mine at 520 m depth that had no nearby pillar recovery, and(5) coal burst on development at a West Virginia mine at the relatively shallow depth of 335 m that also had no nearby pillar recovery. The paper provides guidance so that when an operation encounters a potential pseudo gob stress interaction the hazard can be mitigated based on an understanding of the mechanism encountered.展开更多
The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we est...The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we established a mechanical model of elastic plate on elastic foundation in which pillars and hard roofs were considered as continuous Winkler foundations and elastic plates, respectively. The synergetic instability of pillar and roof system was analyzed based on plate bending theory and catastrophe theory. In addition, mechanical conditions and math criterion of roof failure and overall instability of coal pillar and roof system were given. Through analyzing both advantages and disadvantages of some technologies such as induced caving, filling, gob sealing and isolation, we presented a new filling method named box-filling, in view of box foundation theory, to control the disasters of ground collapse, water inrush and mine fire. In a gob's treatment project in Ordos, safety assessment and filling design of a room and pillar gob have been done by the mechanical model. The results show that the gob will collapse when the pillars' average yield band is wider than 0.93 m, and box-filling can control land collapse, mine flood and mine fire economically and efficiently. So it is worth to study further and popularize.展开更多
Based on the deformation characteristics of the roadways driven along goaf in fully mechanized top coal caving faces, the author considers that it is the key to ensure the stability of surrounding rocks of roadway dri...Based on the deformation characteristics of the roadways driven along goaf in fully mechanized top coal caving faces, the author considers that it is the key to ensure the stability of surrounding rocks of roadway driven along goaf to control the deformation during the period affected by mining. Considering the characteristics of the roadway layout in fully mechanized top coal caving faces, a technical scheme of destressing is put forward and the destressing effect is analyzed by using the software of Universal Distinct Element Code 3 0(UDEC 3 0).展开更多
It is very difficult to reasonably evaluate the loads acting on coal pillars in longwall panels during the planning of a new pillar system. The application of empirical equations is a common practice in calculating co...It is very difficult to reasonably evaluate the loads acting on coal pillars in longwall panels during the planning of a new pillar system. The application of empirical equations is a common practice in calculating coal pillar loads while designing a new pillar. This paper proposes numerical models for evaluating coal pillar loads. The key of building a successful numerical model for calculating coal pillar loads lies in the fact that the model should represent the redistribution of stress all over the longwall panels and the surrounding areas, and it is especially important to include the characteristics of the stress rebuilding process in the gob areas, which are crucial for the building process of coal pillar loads. Based on the geo-mechanical background of the Baoshan Coal Mine, this paper details the procedures of applying numerical models to the evaluation of coal pillar loads and their local practices. The study results show it is feasible and reasonable to use numerical models to evaluate coal pillar loads.展开更多
The CO gas in the upper comer along with the work of mining face in different coal-seam of Lingwu coal-field has deeply affected judgment for the degree of the coal spontaneous combustion and safety work. For this iss...The CO gas in the upper comer along with the work of mining face in different coal-seam of Lingwu coal-field has deeply affected judgment for the degree of the coal spontaneous combustion and safety work. For this issue, a new calculation and forecast model of the carbon monoxide concentration in the upper comer of mining face was deduced for analyzing and calculating the date from the lab and test-in-place, during this course using the knowledge of heat transfer, fluid dynamics, and mathematics. The model took into account the characteristics of the coal spontaneous combustion, coal mining conditions, and other correlate factors, so the CO concentration of the upper comer safe under the normal condition, and it is in danger when the coal reached spontaneous combustion, which can be calculated accurately with the model and compared with the measured concentration with a tolerance of less than 12%.展开更多
In longwall mines, atmospheric pressure fluctuations can disturb the pressure balance between the gob and the ventilated working area, resulting in a phenomenon known as ‘‘gob breathing". Gob breathing triggers...In longwall mines, atmospheric pressure fluctuations can disturb the pressure balance between the gob and the ventilated working area, resulting in a phenomenon known as ‘‘gob breathing". Gob breathing triggers gas flows across the gob and the working areas and may result in a condition where an oxygen deficient mixture or a methane accumulation in the gob flows into the face area. Computational Fluid Dynamics(CFDs) modeling was carried out to analyze this phenomenon and its impact on the development of an explosive mixture in a bleeder-ventilated panel scheme. Simulation results indicate that the outgassing and ingassing across the gob and the formation of Explosive Gas Zones(EGZs) are directly affected by atmospheric pressure changes. In the location where methane zones interface with mine air, EGZ fringes may form along the face and in the bleeder entries. These findings help assess the methane ignition and explosion risks associated with fluctuating atmospheric pressures.展开更多
Gob ventilation boreholes(GVBs)are widely used for degasification in U.S.longwall coal mines.Depending on geological conditions,30–50%of methane can be recovered from longwall gob using GVBs.A NIOSH funded research a...Gob ventilation boreholes(GVBs)are widely used for degasification in U.S.longwall coal mines.Depending on geological conditions,30–50%of methane can be recovered from longwall gob using GVBs.A NIOSH funded research at the Colorado School of Mines confirmed that GVBs can efficiently reduce methane at the face.However,GVBs can also draw some fresh air from the face and create explosive gas zones(EGZs).Explosive gas mixtures may be formed in gob areas due to the increased ingress of oxygen from GVBs.It is critical to identify the locations for GVBs for maximizing extraction of methane and minimizing hazards of explosion.This study analyzes the effect of operating parameters and design of GVB on methane extraction,EGZs formation,and face and tailgate methane concentrations.Methane extraction,formation of EGZs,and concentration of methane in working areas are significantly impacted by various factors.These factors include the distance of work face and tailgate from GVBs,diameter of GVBs,vacuum pressure of wellhead,GVB distance from the roof of the coal seam,and number of operating GVBs in a panel.Computational fluid dynamics(CFD)evaluations suggest optimal design and operating parameters of GVBs that can contribute to maximum benefits with minimum risks.展开更多
The freeway passes over the gob area of the Zaibo coalmine or its neighbor- hood when it is built. It is a noticeable problem that the construction of freeway and the underground coal mining interact, especially the d...The freeway passes over the gob area of the Zaibo coalmine or its neighbor- hood when it is built. It is a noticeable problem that the construction of freeway and the underground coal mining interact, especially the deformation and destruction of the gob area of the coalmine influence the long-term stability of the freeway. In the paper, based on the actual data of the exploration about the gob area of Zaibo coalmine and the built project of the freeway,the variety rule of the coal beds below the freeway was studied by using of FEM during the process of coal mining. The statuses of the stresses and strains,the varieties of the plastic area were simulated in the whole rock mass. The characters of stresses and deformation of the gob area of the coalmine were analyzed and evaluated after the freeway built. The long-term stability of the gob area was pre- dicted. The deformation of the gob area under the freeway has not been finished, and the relative measures must be taken.展开更多
Aiming at the difficulty in stress analysis for strata under pillars with actual bearing conditions, an approach was proposed to apply multi-sectional linear approximation to the characteristic curves of pillar loads,...Aiming at the difficulty in stress analysis for strata under pillars with actual bearing conditions, an approach was proposed to apply multi-sectional linear approximation to the characteristic curves of pillar loads, and stress of strata was calculated under pillars with linear load by calculation method for uniform load. This approach leads to a rapid analyzing method for strata stress under pillars with any form of loads. Through theoretical analysis, strata stress expressions for pillars under linear bearing conditions are obtained. In addition, two concepts, stress increase factor and stress factor, are proposed for the approximate analysis of strata stress by uniform load approximation method. It is also found that the stress increase factor of strata is related to the strata stress factor and the ratio of the minimum load on the pillar' two ends to the maximum one; and the distribution features of stress factors and the sizes of their influencing areas in strata influenced by overlying pillars are obtained. Combining with the gob pillar conditions of Jurassic coal seam in Tongxin Coal Mine, it is demonstrated that the results obtained by stress distribution analysis of the strata stress in non-influencing areas of pillars with linear bearing through uniform load approximation are in basic accordance with the results obtained for pillars under linear bearing condition. Therefore, it is feasible and accurate to calculate stress in non-influencing area in strata under pillars with linear bearing condition by uniform load calculation method.展开更多
基金Financial support for this work was obtained from the National Natural Science Foundation of China(No.51074059)
文摘The present study examines the results of the researches related to the gob bulking factor carried out at home and abroad.A mathematical function of a three-dimensional gob bulking factor is described based on a three-dimensional gob model.The method of taking value for interstice and permeability ratios is also proposed.The law of air leakage of fully mechanized top coal is researched in this study.The results show that the speed of air flow near the upper and lower crossheadings is higher than that in the central section of the gob at the same distance from the working face.When the amount of air at the working face exceeds a critical amount,the width of the spontaneous combustion zone in the upper and lower crossheadings is also larger than that in the central section.In this situation,the key is preventing the coal left in the upper and lower crossheadings from self-igniting.Reducing the amount of air at the working face can decrease the width of the spontaneous combustion zone,especially the width near the upper and lower crossheadings.This also moves the spontaneous combustion zone in the direction of the working face.It can prevent the coal in the gob from self-igniting by making the coal left in the crossheadings to be inert and by effectively controlling the amount of air at the working face.
基金supported by the National Natural Science Foundation for Youth(No.51304200)the China Postdoctoral Science Foundation Project(No.2013M540477)+1 种基金the Superior Subject Construction Project of Universities in Jiangsu Province,the Independent Research Project of State Key Laboratory of Coal Resources and Mine Safety(No.SKLCRSM11X02)the National Natural Science Foundation of China(No.51074163)
文摘To discuss the domino instability effect and large area roof falling and roof accidents of surrounding rockcoal pillars in a room-and-pillar gob,the equilibrium equation for a roof-coal pillar-floor system with the influence of mining floor was developed based on the engineering conditions of the surrounding rock in a room-and-pillar gob in the 3^(-2)coal seam of Tanggonggou mine.The conditions of system instability and the relationship between system stability and system stiffness were analyzed from an energetic point of view.Numerical simulation using the discrete element software UDEC was also carried out to simulate conditions causing the domino effect on surrounding rock-coal pillars in a 3^(-2)room-and-pillar gob.The results show that:if we want the system to destabilize,the collective energy in roof-and-floor must be larger than that in the coal pillar.When the stiffness of the coal pillars and the roof-and-floor are both greater than zero,the system is stable.When the stiffness of the coal pillars is negative but the summed stiffness of the coal pillars and roof-and-floor is larger than or equal to zero,the system is statically destroyed.When the sum of the coal pillars and the roof-floor stiffness is negative,the system suffers from severe damages.For equal advance distances of the coal mining face,the wider coal pillars can reduce the probability of domino type instability.Conversely,the smaller width pillars can increase the instability probability.Domino type instability of surrounding rock-coal pillars is predicted to be unlikely when the width of coal pillars is not less than 8 m.
基金Acknowledgments This work was supported by the National Nat- ural Science Foundation of China (41172147), the Anhui Province Science and Technology Research Plan (12010402110), and the Shanxi Province One Hundred Distinguished Professor Plan project.
文摘The techniques of stress relief mining in low-permeability coal seams and pillarless gob side retained roadway entry using Y-type ventilation and gas drainage systems were developed to control gas outbursts and applied successfully. However, as the mining depth increasing, parts of the gas drainage system are not suitable for mines with high gas emissions. Because larger mining depths cause higher ground stresses, it becomes extremely difficult to maintain long gob side roadways. The greater deformation suffered by the roadway is not favorable lor borehole drilling for continuous gas drainage. To solve these problems, Y-type ventilation and gas drainage systems installed from a roof roadway were designed for drainage optimization. This system was designed based on a gas-enrichment zone analysis developed from mining the 11-2 coal seam in the Zhuji Mine at Huainan, Anhui Province, China. The method of Y-type gas extraction from different mine areas was applied to the panel 1112(1) in the Zhuji Mine. The absolute gas emission rate was up to 116.3 m^3/min with an average flow of 69.1 m^3/min at an average drainage concentration of nearly 85 %. After the Y-type method was adopted, the concentration of gas in the return air was 0.15 %-0.64 %, averaging 0.39 % with a ventilation rate of 2100-2750 m^3/min. The gas management system proved to be efficient, and the effective gas control allowed safe production to continue .
基金The financial supports from the National Natural Science Foundation of China (No.50874088)the Changjiang Scholars and Innovative Research Team in University (No.IRT0856)
文摘The explosive gases CO and C2H4, released mainly flammable gases during the process of coal self-ignition, are of the most important ingredients of the multi-component gases in goal areas, along with CH4. We have determined some of the parame- ters of explosive properties of the one-component gases CH4, CO and C2H4 using an explosive trial device of polybasic explosive gas mixtures and emphasized particularly the effect on the limits of explosive concentration of the binary explosive mixed gases CH4+CO, CH4+C2H4, as a function of the amount of CO, C2H4 and inert flame resisting gases (N2, CO2). The experimental results show that the effect of inert gases on the explosive limits of mixed gases, given the property of explosive gas, is obvious: the inert gases (N2, CO2) possess some inhibitory effects on the explosion of the multi-component explosive gas mixtures. The results will provide some experimental support to suppress the occurrence of the gas explosions in goaf areas and provide some directions for designing explosion-proof electric equipment and fire arresters.
文摘The variation of the stress in the bolted surrounding rocks structure of the roadway driven along goaf in a fully mechanized top coal caving face with moderate stable conditions are studied by using numerical calculation. The essential deformation characteristics of the surrounding rocks in this kind of roadway are obtained and the key technology of bolting support used under these conditions is put forward.
文摘A numerical-model-based approach was recently developed for estimating the changes in both the horizontal and vertical loading conditions induced by an approaching longwall face.In this approach, a systematic procedure is used to estimate the model's inputs.Shearing along the bedding planes is modeled with ubiquitous joint elements and interface elements.Coal is modeled with a newly developed coal mass model.The response of the gob is calibrated with back analysis of subsidence data and the results of previously published laboratory tests on rock fragments.The model results were verified with the subsidence and stress data recently collected from a longwall mine in the eastern United States.
基金provided by the National Natural Science Foundation of China(No.5137403)the Fundamental Research Funds for the Central Universities(No.FRF-TP-15-042A1)
文摘The stress path characteristics of surrounding rock in the formation of gob were analyzed and the unloading was solved. Taking Chengchao Iron Mine as the engineering background, the model for analyzing the instability of deep gob was established based on the mechanism of stress relief in deep mining.The energy evolution law was analyzed by introducing the local energy release rate index(LERR), and the energy criterion of the instability of surrounding rock was established based on the cusp catastrophe theory. The results show that the evolution equation of the local energy release of the surrounding rock is a quartic function with one unknown and the release rate increases gradually during the mining process.The calculation results show that the gob is stable. The LERR per unit volume of the bottom structure is relatively smaller which means that the stability is better. The LERR distribution showed that there was main energy release in the horizontal direction and energy concentration in the vertical direction which meets the characteristics of deep mining. In summary, this model could effectively calculate the stability of surrounding rock in the formation of gob. The LERR could reflect the dynamic process of energy release,transfer and dissipation and that provided an important reference for the study of the stability of deep mined out area.
文摘Based on the construction project of the Changjiashan tunnel of the freeway,the variety rule of surrounding rock masses of the tunnel through the gob of coalmine wasstudied by using of finite element methed(FEM).The status of the stress and strain,thevariety of the plastic area were simulated in the whole rock mass before and after thetunnel was excavated.The characters of stress and deformation of surrounding rockmasses were analyzed when the tunnel was built.It concluded from the numerical simula-tion that the influence on the tunneling is great when the tunnel passing through the gob ofcoalmine is excavated,and the relative measures should be taken.
文摘Underground coal mining in the U.S. is conducted in numerous regions where previous workings exist above and/or below an actively mined seam. Miners know that overlying or underlying fully extracted coal areas, also known as gob regions, can result in abutment stresses that affect the active mining. If there was no full extraction, and the past mining consists entirely of intact pillars, the stresses on the active seam are usually minimal. However, experience has shown that in some situations there has been sufficient yielding in overlying or underlying pillar systems to cause stress transfer to the adjoining larger pillars or barriers, which in turn, transfer significant stresses onto the workings of the active seam. In other words, the overlying or underlying pillar system behaves as a ‘‘pseudo gob." The presence of a pseudo gob is often unexpected, and the consequences can be severe. This paper presents several case histories, summarized briefly below, that illustrate pseudo gob phenomenon:(1) pillar rib degradation at a West Virginia mine at 335 m depth that contributed to a rib roll fatality,(2) pillar rib deterioration at a Western Kentucky mine at 175 m depth that required pillar size adjustment and installation of supplemental bolting,(3) roof deterioration at an eastern Kentucky mine at 400 m depth that stopped mine advance and required redirecting the section development,(4) coal burst on development at an eastern Kentucky mine at 520 m depth that had no nearby pillar recovery, and(5) coal burst on development at a West Virginia mine at the relatively shallow depth of 335 m that also had no nearby pillar recovery. The paper provides guidance so that when an operation encounters a potential pseudo gob stress interaction the hazard can be mitigated based on an understanding of the mechanism encountered.
基金provided by the National Natural Science Foundation of China (No. 41071273)
文摘The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we established a mechanical model of elastic plate on elastic foundation in which pillars and hard roofs were considered as continuous Winkler foundations and elastic plates, respectively. The synergetic instability of pillar and roof system was analyzed based on plate bending theory and catastrophe theory. In addition, mechanical conditions and math criterion of roof failure and overall instability of coal pillar and roof system were given. Through analyzing both advantages and disadvantages of some technologies such as induced caving, filling, gob sealing and isolation, we presented a new filling method named box-filling, in view of box foundation theory, to control the disasters of ground collapse, water inrush and mine fire. In a gob's treatment project in Ordos, safety assessment and filling design of a room and pillar gob have been done by the mechanical model. The results show that the gob will collapse when the pillars' average yield band is wider than 0.93 m, and box-filling can control land collapse, mine flood and mine fire economically and efficiently. So it is worth to study further and popularize.
文摘Based on the deformation characteristics of the roadways driven along goaf in fully mechanized top coal caving faces, the author considers that it is the key to ensure the stability of surrounding rocks of roadway driven along goaf to control the deformation during the period affected by mining. Considering the characteristics of the roadway layout in fully mechanized top coal caving faces, a technical scheme of destressing is put forward and the destressing effect is analyzed by using the software of Universal Distinct Element Code 3 0(UDEC 3 0).
文摘It is very difficult to reasonably evaluate the loads acting on coal pillars in longwall panels during the planning of a new pillar system. The application of empirical equations is a common practice in calculating coal pillar loads while designing a new pillar. This paper proposes numerical models for evaluating coal pillar loads. The key of building a successful numerical model for calculating coal pillar loads lies in the fact that the model should represent the redistribution of stress all over the longwall panels and the surrounding areas, and it is especially important to include the characteristics of the stress rebuilding process in the gob areas, which are crucial for the building process of coal pillar loads. Based on the geo-mechanical background of the Baoshan Coal Mine, this paper details the procedures of applying numerical models to the evaluation of coal pillar loads and their local practices. The study results show it is feasible and reasonable to use numerical models to evaluate coal pillar loads.
文摘The CO gas in the upper comer along with the work of mining face in different coal-seam of Lingwu coal-field has deeply affected judgment for the degree of the coal spontaneous combustion and safety work. For this issue, a new calculation and forecast model of the carbon monoxide concentration in the upper comer of mining face was deduced for analyzing and calculating the date from the lab and test-in-place, during this course using the knowledge of heat transfer, fluid dynamics, and mathematics. The model took into account the characteristics of the coal spontaneous combustion, coal mining conditions, and other correlate factors, so the CO concentration of the upper comer safe under the normal condition, and it is in danger when the coal reached spontaneous combustion, which can be calculated accurately with the model and compared with the measured concentration with a tolerance of less than 12%.
基金the financial support of the National Institute for Occupational Safety and Health–United States(No.211-2014-60050)
文摘In longwall mines, atmospheric pressure fluctuations can disturb the pressure balance between the gob and the ventilated working area, resulting in a phenomenon known as ‘‘gob breathing". Gob breathing triggers gas flows across the gob and the working areas and may result in a condition where an oxygen deficient mixture or a methane accumulation in the gob flows into the face area. Computational Fluid Dynamics(CFDs) modeling was carried out to analyze this phenomenon and its impact on the development of an explosive mixture in a bleeder-ventilated panel scheme. Simulation results indicate that the outgassing and ingassing across the gob and the formation of Explosive Gas Zones(EGZs) are directly affected by atmospheric pressure changes. In the location where methane zones interface with mine air, EGZ fringes may form along the face and in the bleeder entries. These findings help assess the methane ignition and explosion risks associated with fluctuating atmospheric pressures.
基金the Colorado School of Mines thankfully acknowledges all financial support from the NIOSH under contract number[200-2009-31409]。
文摘Gob ventilation boreholes(GVBs)are widely used for degasification in U.S.longwall coal mines.Depending on geological conditions,30–50%of methane can be recovered from longwall gob using GVBs.A NIOSH funded research at the Colorado School of Mines confirmed that GVBs can efficiently reduce methane at the face.However,GVBs can also draw some fresh air from the face and create explosive gas zones(EGZs).Explosive gas mixtures may be formed in gob areas due to the increased ingress of oxygen from GVBs.It is critical to identify the locations for GVBs for maximizing extraction of methane and minimizing hazards of explosion.This study analyzes the effect of operating parameters and design of GVB on methane extraction,EGZs formation,and face and tailgate methane concentrations.Methane extraction,formation of EGZs,and concentration of methane in working areas are significantly impacted by various factors.These factors include the distance of work face and tailgate from GVBs,diameter of GVBs,vacuum pressure of wellhead,GVB distance from the roof of the coal seam,and number of operating GVBs in a panel.Computational fluid dynamics(CFD)evaluations suggest optimal design and operating parameters of GVBs that can contribute to maximum benefits with minimum risks.
文摘The freeway passes over the gob area of the Zaibo coalmine or its neighbor- hood when it is built. It is a noticeable problem that the construction of freeway and the underground coal mining interact, especially the deformation and destruction of the gob area of the coalmine influence the long-term stability of the freeway. In the paper, based on the actual data of the exploration about the gob area of Zaibo coalmine and the built project of the freeway,the variety rule of the coal beds below the freeway was studied by using of FEM during the process of coal mining. The statuses of the stresses and strains,the varieties of the plastic area were simulated in the whole rock mass. The characters of stresses and deformation of the gob area of the coalmine were analyzed and evaluated after the freeway built. The long-term stability of the gob area was pre- dicted. The deformation of the gob area under the freeway has not been finished, and the relative measures must be taken.
基金Project(51174192) supported by the National Natural Science Foundation of ChinaProject(BRA2010024) supported by"333"Training Foundation of Jiangsu Province,ChinaProject(CXLX12_0964) supported by Innovation Project of Graduate Students Training of Jiangsu Province,China
文摘Aiming at the difficulty in stress analysis for strata under pillars with actual bearing conditions, an approach was proposed to apply multi-sectional linear approximation to the characteristic curves of pillar loads, and stress of strata was calculated under pillars with linear load by calculation method for uniform load. This approach leads to a rapid analyzing method for strata stress under pillars with any form of loads. Through theoretical analysis, strata stress expressions for pillars under linear bearing conditions are obtained. In addition, two concepts, stress increase factor and stress factor, are proposed for the approximate analysis of strata stress by uniform load approximation method. It is also found that the stress increase factor of strata is related to the strata stress factor and the ratio of the minimum load on the pillar' two ends to the maximum one; and the distribution features of stress factors and the sizes of their influencing areas in strata influenced by overlying pillars are obtained. Combining with the gob pillar conditions of Jurassic coal seam in Tongxin Coal Mine, it is demonstrated that the results obtained by stress distribution analysis of the strata stress in non-influencing areas of pillars with linear bearing through uniform load approximation are in basic accordance with the results obtained for pillars under linear bearing condition. Therefore, it is feasible and accurate to calculate stress in non-influencing area in strata under pillars with linear bearing condition by uniform load calculation method.