It’s a golden season of harvest during which it was a fine autumn weather with the pale clouds and a light breeze blowing in September in Beijing. The China International Economic and Trade Arbitration Commission and...It’s a golden season of harvest during which it was a fine autumn weather with the pale clouds and a light breeze blowing in September in Beijing. The China International Economic and Trade Arbitration Commission and China Maritime Arbitration Commission held a forum of arbitrators on 26 to 28 September 2001s dealing with arbitrate work in a beautiful landscape place, Kuan Gou, a suburb in Beijing. Mr. Yu Xiaosong, the Chair- man of China Council for Promotion of International Trade/China Chamber of International Commerce, China Intemational Economic and Trade Arbitration Commission and China Maritime Arbitration Commission, gave a talk at the forum stressed that the development of arbitration cause in China should be marched with ticccccccccmes and adapted to the fast development in the situations both of home and abroad. Mr. Yu Xaosong’s talk put forward a kind of principles for the development of the arbitration cause in China, a part of which, we publish part of it here as a reference for the arbitrate circle colleagues.展开更多
The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also pr...The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also proved.展开更多
The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems wit...The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.展开更多
In this paper, we derive the continuous dependence on the initial-time geometry for the solution of a parabolic equation from dynamo theory. The forward in time problem and backward in time problem are considered. An ...In this paper, we derive the continuous dependence on the initial-time geometry for the solution of a parabolic equation from dynamo theory. The forward in time problem and backward in time problem are considered. An explicit continuous dependence inequality is obtained even with different prescribed data.展开更多
Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Fi...Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Firstly taking advantage of simpleness of inverse kinematics, the forward kinematics is transformed to an optimal problem. Immune evolutionary algorithm is employed to find approximate solution of this optimal problem in manipulator's workspace. Then using above solution as iterative initialization, a speedy numerical iterative scheme is proposed to get more precise solution. In the manipulator running course, the iteration initialization can be selected as the last period position and orientation. Because the initialization is closed to correct solution, solving precision is high and speed is rapid enough to satisfy real-time requirement. This mixed forward kinematics algorithm is applied to real Stewart parallel manipulator in the real-time control course. The examination result shows that the algorithm is very efficient and practical.展开更多
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c...The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.展开更多
This paper analyses the issue of impact time control of super-cavitation weapons impact fixed targets which mainly refer to the ships or submarines who lost power, but still have combat capability. Control over impact...This paper analyses the issue of impact time control of super-cavitation weapons impact fixed targets which mainly refer to the ships or submarines who lost power, but still have combat capability. Control over impact time constraints of guidance law(ITCG) is derived by using sliding mode control(SMC) and Lyapunov stability theorem. The expected impact time is realized by using the notion of attack process and estimated time-to-go to design sliding mode surface(SMS). ITCG contains equivalent and discontinuous guidance laws, once state variables arrive at SMS,the equivalent guidance law keeps the state variables on SMS,then the discontinuous guidance law enforces state variables to move and reach SMS. The singularity problem of ITCG is also analyzed. Theoretical analysis and numerical simulation results are given to test the effectiveness of ITCG designed in this paper.展开更多
In this paper,a new homing guidance method is used to control the flying time and falling angle for guided missiles. Through this approach,it finds the approximate solution to the quadratic equation of time-togo,which...In this paper,a new homing guidance method is used to control the flying time and falling angle for guided missiles. Through this approach,it finds the approximate solution to the quadratic equation of time-togo,which is used for the formula derivation of the flying time control command. In this guidance law design,the acceleration rate control command is adopted. The guidance law is composed of a PN guidance command and a flying time control command. Firstly,it obtains a desired falling angle with accurate guidance. Secondly,it introduces to satisfy the constraint of flying time. The flying time control requires an assumption on the future evolution of missile,which is called time-to-go. To cope with the time-varying speed of missiles,a method of compensating the estimation of time-to-go is presented. The new guidance law is evaluated by using a simulation of typical terminal guidance for rocket-propelled torpedo. The simulation results show that the guidance achieves excellent control performance and exhibits insensitivity to initial trajectory parameter over a widen flight envelope.展开更多
To improve the resolution of crosshole electromagnetic tomography, high precision of forward modeling is necessary. A pseudo-spectral time domain (PSTD) forward modeling was used to simulate electromagnetic wave pro...To improve the resolution of crosshole electromagnetic tomography, high precision of forward modeling is necessary. A pseudo-spectral time domain (PSTD) forward modeling was used to simulate electromagnetic wave propagation between two boreholes. The PSTD algorithm is based on the finite difference time domain (FDTD) method and uses the fast Fourier transform (FFT) algorithm for spatial derivatives in Maxwell's equations. Besides having the strongpoint of the FDTD method, the calculation precision of the PSTD algorithm is higher than that of the FDTD method under the same calculation condition. The forward modeling using the PSTD method will play an important role in enhancing the resolution of crosshole electromagnetic tomography.展开更多
In April this year China National Nonferrous Metals Industries Corporation(CNNMIC)performed the Tenth Anniversary Ceremony.In the past decade the CNNMIC realized“fivedoublings”,i.e.the output,profits tax,fixed asset...In April this year China National Nonferrous Metals Industries Corporation(CNNMIC)performed the Tenth Anniversary Ceremony.In the past decade the CNNMIC realized“fivedoublings”,i.e.the output,profits tax,fixed assets,enterprise revenue and personal income展开更多
This research paper represents a numerical approximation to non-linear two-dimensional reaction diffusion equation from population genetics. Since various initial and boundary value problems exist in two-dimensional r...This research paper represents a numerical approximation to non-linear two-dimensional reaction diffusion equation from population genetics. Since various initial and boundary value problems exist in two-dimensional reaction-diffusion, phenomena are studied numerically by different numerical methods, here we use finite difference schemes to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with exact results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. It is shown that the numerical schemes give better solutions. Moreover, the schemes can be easily applied to a wide class of higher dimension nonlinear reaction diffusion equations with a little modification.展开更多
This paper tries to make a comparison and connection between Fokker-Planck or forward Kolmogorov equation and psychological future time which is based on quantum mechanics. It will be showed that in quantum finance fo...This paper tries to make a comparison and connection between Fokker-Planck or forward Kolmogorov equation and psychological future time which is based on quantum mechanics. It will be showed that in quantum finance forward interest rate model can be further improved by noting that the predicted correlation structure for field theory models depends only on variable where t is present time and x is future time. On the other side, forward Kolmogorov equation is a parabolic partial differential equation, requiring international conditions at time t and to be solved for . The aforementioned equation is to be used if there are some special states now and it is necessary to know what can happen later. It will be tried to establish the connection between these two equations. It is proved that the psychological future time if applied and implemented in Fokker-Planck equation is unstable and is changeable so it is not easily predictable. Some kinds of nonlinear functions can be applied in order to establish the notion of psychological future time, however it is unstable and it should be continuously changed.展开更多
As a fiber sensor, optical time domain L reflectometer becomes more and more popular to measure parameters, such as strain and temperature in structural health monitoring (SHM) simultaneously. Since the accuracy of...As a fiber sensor, optical time domain L reflectometer becomes more and more popular to measure parameters, such as strain and temperature in structural health monitoring (SHM) simultaneously. Since the accuracy of range resolution in optical time domain reflectometer (OTDR) is determined by the pulse width of laser, the range resolution in order of centimeter is achieved by employing of picoseconds lasers which are not commercial. In this paper, to achieve this accuracy with conventional OTDR, Fourier wavelet regularized deconvolution (ForWaRD) method is employed to deconvolve and denoise the detected signal simultaneously. Simulations show that this method improves resolution of conventional OTDR system to the order of several centimeters.展开更多
In areas with a low signal-to-noise ratio of seismic data,the continuity of the seismic reflection waves in the exploration target layer is very poor,which will reduce the imaging accuracy and make it impossible to so...In areas with a low signal-to-noise ratio of seismic data,the continuity of the seismic reflection waves in the exploration target layer is very poor,which will reduce the imaging accuracy and make it impossible to solve certain geological tasks.This article suggests an approach to address the issue of seismic acquisition by optimizing excitation parameters.It involves conducting a detailed investigation of the surface structure,enhancing the observation system,increasing the coverage appropriately,and transitioning from combined-well excitation to single-well excitation.Additionally,the use of technical tools like qualitative evaluation of the observation system and forward modeling are employed to determine the final optimized seismic acquisition plan.The effectiveness of this approach is evident from the seismic profile obtained in an exploration area in Inner Mongolia.展开更多
目的:分析计时起立-行走测试(TUGT)对老年2型糖尿病周围神经病变病人跌倒风险的评估价值。方法:回顾性分析2020年1月—2022年12月在我院内分泌科纳入治疗的2型糖尿病周围神经病变病人120例为研究对象,收集病人一般资料、TUGT测试结果,采...目的:分析计时起立-行走测试(TUGT)对老年2型糖尿病周围神经病变病人跌倒风险的评估价值。方法:回顾性分析2020年1月—2022年12月在我院内分泌科纳入治疗的2型糖尿病周围神经病变病人120例为研究对象,收集病人一般资料、TUGT测试结果,采用SPSS 22.0、R Studio 1.4.1103进行联合数据分析,研究相关性和预测价值。结果:本研究纳入的120例病人均顺利完成TUGT测试,完成率为100%,数据收集率为100%。所有病人TUGT时间为(16.03±3.29)s。Spearman相关性分析结果显示,TUGT时间与跌倒史、性别之间呈正相关(P<0.05);TUGT时间与2型糖尿病病程、合并周围神经病变病程、年龄之间无明显相关关系。TUGT时间用于预测老年2型糖尿病周围神经病变病人跌倒风险的最佳临界值为14.19 s,受试者工作特征曲线(ROC)曲线下面积(AUC)值为0.773,敏感度为86.29%,特异度为67.16%。结论:跌倒史、性别是影响老年2型糖尿病周围神经病变病人TUGT时间的危险因素,同时,TUGT时间对老年2型糖尿病周围神经病变病人跌倒具有良好的预测价值。展开更多
文摘It’s a golden season of harvest during which it was a fine autumn weather with the pale clouds and a light breeze blowing in September in Beijing. The China International Economic and Trade Arbitration Commission and China Maritime Arbitration Commission held a forum of arbitrators on 26 to 28 September 2001s dealing with arbitrate work in a beautiful landscape place, Kuan Gou, a suburb in Beijing. Mr. Yu Xiaosong, the Chair- man of China Council for Promotion of International Trade/China Chamber of International Commerce, China Intemational Economic and Trade Arbitration Commission and China Maritime Arbitration Commission, gave a talk at the forum stressed that the development of arbitration cause in China should be marched with ticccccccccmes and adapted to the fast development in the situations both of home and abroad. Mr. Yu Xaosong’s talk put forward a kind of principles for the development of the arbitration cause in China, a part of which, we publish part of it here as a reference for the arbitrate circle colleagues.
基金This work was supported by the National Natural Science Foundation of China (10001022 and 10371067)the Excellent Young Teachers Program and the Doctoral program Foundation of MOE and Shandong Province,P.R.C.
文摘The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also proved.
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Found of Jiangsu Province(Grant No.BK20221389)the Newton Advanced Fellowships(Grant No.NAF\R1\180304)by the Royal Society.
文摘The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.
文摘In this paper, we derive the continuous dependence on the initial-time geometry for the solution of a parabolic equation from dynamo theory. The forward in time problem and backward in time problem are considered. An explicit continuous dependence inequality is obtained even with different prescribed data.
文摘Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Firstly taking advantage of simpleness of inverse kinematics, the forward kinematics is transformed to an optimal problem. Immune evolutionary algorithm is employed to find approximate solution of this optimal problem in manipulator's workspace. Then using above solution as iterative initialization, a speedy numerical iterative scheme is proposed to get more precise solution. In the manipulator running course, the iteration initialization can be selected as the last period position and orientation. Because the initialization is closed to correct solution, solving precision is high and speed is rapid enough to satisfy real-time requirement. This mixed forward kinematics algorithm is applied to real Stewart parallel manipulator in the real-time control course. The examination result shows that the algorithm is very efficient and practical.
文摘The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.
基金supported by the National Natural Science Foundation of China(5137917651679201)
文摘This paper analyses the issue of impact time control of super-cavitation weapons impact fixed targets which mainly refer to the ships or submarines who lost power, but still have combat capability. Control over impact time constraints of guidance law(ITCG) is derived by using sliding mode control(SMC) and Lyapunov stability theorem. The expected impact time is realized by using the notion of attack process and estimated time-to-go to design sliding mode surface(SMS). ITCG contains equivalent and discontinuous guidance laws, once state variables arrive at SMS,the equivalent guidance law keeps the state variables on SMS,then the discontinuous guidance law enforces state variables to move and reach SMS. The singularity problem of ITCG is also analyzed. Theoretical analysis and numerical simulation results are given to test the effectiveness of ITCG designed in this paper.
文摘In this paper,a new homing guidance method is used to control the flying time and falling angle for guided missiles. Through this approach,it finds the approximate solution to the quadratic equation of time-togo,which is used for the formula derivation of the flying time control command. In this guidance law design,the acceleration rate control command is adopted. The guidance law is composed of a PN guidance command and a flying time control command. Firstly,it obtains a desired falling angle with accurate guidance. Secondly,it introduces to satisfy the constraint of flying time. The flying time control requires an assumption on the future evolution of missile,which is called time-to-go. To cope with the time-varying speed of missiles,a method of compensating the estimation of time-to-go is presented. The new guidance law is evaluated by using a simulation of typical terminal guidance for rocket-propelled torpedo. The simulation results show that the guidance achieves excellent control performance and exhibits insensitivity to initial trajectory parameter over a widen flight envelope.
基金This paper is supported by the Focused Subject Program of Beijing (No. XK104910598)Foundation for Returned Students of Ministry of Education, and Foundation of China University of Geosciences (Beijing).
文摘To improve the resolution of crosshole electromagnetic tomography, high precision of forward modeling is necessary. A pseudo-spectral time domain (PSTD) forward modeling was used to simulate electromagnetic wave propagation between two boreholes. The PSTD algorithm is based on the finite difference time domain (FDTD) method and uses the fast Fourier transform (FFT) algorithm for spatial derivatives in Maxwell's equations. Besides having the strongpoint of the FDTD method, the calculation precision of the PSTD algorithm is higher than that of the FDTD method under the same calculation condition. The forward modeling using the PSTD method will play an important role in enhancing the resolution of crosshole electromagnetic tomography.
文摘In April this year China National Nonferrous Metals Industries Corporation(CNNMIC)performed the Tenth Anniversary Ceremony.In the past decade the CNNMIC realized“fivedoublings”,i.e.the output,profits tax,fixed assets,enterprise revenue and personal income
文摘This research paper represents a numerical approximation to non-linear two-dimensional reaction diffusion equation from population genetics. Since various initial and boundary value problems exist in two-dimensional reaction-diffusion, phenomena are studied numerically by different numerical methods, here we use finite difference schemes to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with exact results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. It is shown that the numerical schemes give better solutions. Moreover, the schemes can be easily applied to a wide class of higher dimension nonlinear reaction diffusion equations with a little modification.
文摘This paper tries to make a comparison and connection between Fokker-Planck or forward Kolmogorov equation and psychological future time which is based on quantum mechanics. It will be showed that in quantum finance forward interest rate model can be further improved by noting that the predicted correlation structure for field theory models depends only on variable where t is present time and x is future time. On the other side, forward Kolmogorov equation is a parabolic partial differential equation, requiring international conditions at time t and to be solved for . The aforementioned equation is to be used if there are some special states now and it is necessary to know what can happen later. It will be tried to establish the connection between these two equations. It is proved that the psychological future time if applied and implemented in Fokker-Planck equation is unstable and is changeable so it is not easily predictable. Some kinds of nonlinear functions can be applied in order to establish the notion of psychological future time, however it is unstable and it should be continuously changed.
文摘As a fiber sensor, optical time domain L reflectometer becomes more and more popular to measure parameters, such as strain and temperature in structural health monitoring (SHM) simultaneously. Since the accuracy of range resolution in optical time domain reflectometer (OTDR) is determined by the pulse width of laser, the range resolution in order of centimeter is achieved by employing of picoseconds lasers which are not commercial. In this paper, to achieve this accuracy with conventional OTDR, Fourier wavelet regularized deconvolution (ForWaRD) method is employed to deconvolve and denoise the detected signal simultaneously. Simulations show that this method improves resolution of conventional OTDR system to the order of several centimeters.
文摘In areas with a low signal-to-noise ratio of seismic data,the continuity of the seismic reflection waves in the exploration target layer is very poor,which will reduce the imaging accuracy and make it impossible to solve certain geological tasks.This article suggests an approach to address the issue of seismic acquisition by optimizing excitation parameters.It involves conducting a detailed investigation of the surface structure,enhancing the observation system,increasing the coverage appropriately,and transitioning from combined-well excitation to single-well excitation.Additionally,the use of technical tools like qualitative evaluation of the observation system and forward modeling are employed to determine the final optimized seismic acquisition plan.The effectiveness of this approach is evident from the seismic profile obtained in an exploration area in Inner Mongolia.
文摘目的:分析计时起立-行走测试(TUGT)对老年2型糖尿病周围神经病变病人跌倒风险的评估价值。方法:回顾性分析2020年1月—2022年12月在我院内分泌科纳入治疗的2型糖尿病周围神经病变病人120例为研究对象,收集病人一般资料、TUGT测试结果,采用SPSS 22.0、R Studio 1.4.1103进行联合数据分析,研究相关性和预测价值。结果:本研究纳入的120例病人均顺利完成TUGT测试,完成率为100%,数据收集率为100%。所有病人TUGT时间为(16.03±3.29)s。Spearman相关性分析结果显示,TUGT时间与跌倒史、性别之间呈正相关(P<0.05);TUGT时间与2型糖尿病病程、合并周围神经病变病程、年龄之间无明显相关关系。TUGT时间用于预测老年2型糖尿病周围神经病变病人跌倒风险的最佳临界值为14.19 s,受试者工作特征曲线(ROC)曲线下面积(AUC)值为0.773,敏感度为86.29%,特异度为67.16%。结论:跌倒史、性别是影响老年2型糖尿病周围神经病变病人TUGT时间的危险因素,同时,TUGT时间对老年2型糖尿病周围神经病变病人跌倒具有良好的预测价值。