The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated wi...The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated with the Anqi fault.This deposit exhibits characteristics typical of a fault-controlled lode system,and the orebodies consist of auriferous quartz veins and altered wall rocks within Early Carboniferous volcano-sedimentary rocks.Three stages of mineralization have been identified in the Hatu gold deposit:the early pyrite-albite-quartz stage,the middle polymetallic sulfides-ankerite-quartz stage,and late quartz-calcite stage.The sulfur isotopic values of pyrite and arsenopyrite vary in a narrow range from-0.8‰to1.3‰and an average of 0.4‰,the near-zeroδ~(34)S values implicate the thorough homogenization of the sulfur isotopes during the metamorphic dehydration of the Early Carboniferous volcano-sedimentary rocks.Lead isotopic results of pyrite and arsenopyrite(^(206)Pb/^(204)Pb=17.889-18.447,^(207)Pb/^(204)Pb=15.492-15.571,^(208)Pb/^(204)Pb=37.802-38.113)are clustered between orogenic and mantle/upper crust lines,indicating that the lead was mainly sourced from the hostrocks within the Early Carboniferous Tailegula Formation.The characteristics of S and Pb isotopes suggest that the ore-forming metals of the Hatu orogenic gold deposit are of metamorphogenic origin,associated with the continental collision between the Yili-Kazakhstan and Siberian plates during the Late Carboniferous.展开更多
The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,w...The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,west of the Baimashan granitic batholith.In order to discern the characteristics of the ore-formingfluids,the underlying mineralization processes,and establish a foundation for the origin of the Yueguang gold depositfluid inclusion micro-thermometry,as well as quartz hydrogen and oxygen isotope analysis,have been carried out on samples obtained from various stages of mineralization.The hydrothermal miner-alization stages within the Yueguang gold deposit can be categorized into three stages:(i)the barren,pre-ore quartz-pyrite stage(Stage Ⅰ),the quartz-pyrite-gold stage(Stage Ⅱ),and the post-ore quartz-carbonate stage(Stage Ⅲ),with the second stage being the main mineralization stage.Thefluid inclusions identified in samples from the main min-eralization stage can predominantly be described with the NaCl–H_(2)O and CO_(2)–NaCl–H_(2)O systems.These inclusions display homogenization temperatures ranging from 158.8 to 334.9℃,and thefluid salinity ranges from 0.3%to 4.0%(wt.%NaCl equiv.).Laser Raman spectroscopy analysis of individual inclusions further reveals the presence of gas-phases such as CO_(2),CH_(4),and N_(2).Isotopic analysis indicatesδ^(18)Ofluid values ranging from 3.95 to 6.7‰ and δDH_(2)O values ranging from-71.9 to-55.7‰.These results indi-cate that the ore-formingfluid of the Yueguang gold deposit belongs to metamorphic hydrothermalfluids of middle-low temperature and low salinity.In the process of ore formation,gold is transported in the form of Au(HS)2-complexes,with gold deposition being driven byfluid immiscibility.Therefore,the Yueguang gold deposit is categorized as an orogenic gold deposit dominated by metamorphic hydrother-malfluid.It may become a new target for gold exploration in the Baimashan region,central Hunan Province.展开更多
1.Objective The West Qinling Orogen extends east-west over 1500 km and is endowed with dozens of large-super large scale gold deposits.The Zaozigou gold deposit has a proven reserve of 134 t with an average grade of 3...1.Objective The West Qinling Orogen extends east-west over 1500 km and is endowed with dozens of large-super large scale gold deposits.The Zaozigou gold deposit has a proven reserve of 134 t with an average grade of 3.08 g/t thus is one of the largest deposits in the West Qinling Orogen.However,whether the fluid type is metamorphic or magmatichydrothermal and ore-formation processes of the Zaozigou gold deposit are equivocal.Scheelite is a ubiquitous accessory mineral in geologically diverse ore-deposit types and attested to be a strong indicator of ore-forming conditions and oredeposit genesis.展开更多
The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are stri...The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla.展开更多
Lamprophyres typically appear in hydrothermal gold deposits.The relationship between lamprophyres and gold deposits is investigated widely.Some researchers suggest that the emplacement of lamprophyres triggers gold mi...Lamprophyres typically appear in hydrothermal gold deposits.The relationship between lamprophyres and gold deposits is investigated widely.Some researchers suggest that the emplacement of lamprophyres triggers gold mineralization,whereas others hypothesize that the formation of lamprophyres increases the fertility of mantle sources and ore-forming fluids.K-feldspar veins,with ages between those of lamprophyres and gold deposits,appear in lamprophyres in Zhenyuan.Therefore,K-feldspar veins are ideal for investigating the relationship between lamprophyres and gold deposits.Phlogopite in K-feldspar veins has lower Mg#,Ni,and Cr contents and higher TiO2,Li,Ba,Sr,Sc,Zr,Nb,and Cs contents than phlogopite in lamprophyres.The in-situ Sr isotopic values of apatites(0.7063–0.7066)in K-feldspar veins are within the range for apatites(0.7064–0.7078)from lamprophyres.High large-ion lithophile element concentrations and low Nb and Ta concentrations in phlogopite from lamprophyres,in addition to high(87Sr/86Sr)i values of apatite(0.7064–0.7078),indicate that the magma parental to these phlogopite and apatite crystals is derived from an enriched mantle.Kfeldspar veins are genetically correlated with lamprophyres,whereas sulfide mineral assemblage and trace element compositions of pyrite in K-feldspar veins suggest that K-feldspar veins in lamprophyres are not directly related to gold mineralization of the Zhenyuan deposit.展开更多
The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, inc...The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, including the quartz ± pyrite, quartz-polymetallic sulfide, and quartz-carbonate ± pyrite stages. From the early to late stages, the homogenization temperatures of primary fluid inclusions are 281–362°C, 227–331°C, and 149–261°C, respectively. The corresponding salinities estimated for these fluids are 3.9–9.9 wt%, 0.4–9.4 wt%, and 0.7–7.2 wt% Na Cl equiv. Combined with laser Raman spectroscopy data, the ore-forming fluid belongs to a H_(2)O-CO_(2)-Na Cl ± CH_4 system with medium–low temperature and salinity. The δ~(18)Ofluid and δD values for the quartz veins are-1.0‰ to 6.0‰ and-105‰ to-84‰, respectively, which indicates that the ore-forming fluid is of mixed source, mainly derived from magma, with a contribution from meteoric water. Pyrite has been identified into three generations based on mineral paragenetic sequencing, including Py1, Py2, and Py3. The pyrites have δ~(34)S sulfur isotopic compositions from three stages between 3.7‰ and 8.4‰, indicating that sulfur mainly originated from magma. Te, Bi, Sb, and Cu contents in pyrite were all high and showed a strong correlation with Au concentrations. Native gold and the Au-Ag-Bi telluride minerals were formed concurrently, and the As concentration was low and decoupled from the Au content. Therefore, Te, Bi, Sb and other low-melting point chalcophile elements play an important role for gold mineralization in arsenic-deficient ore-forming fluid. Combined with the geological setting, evolution of pyrite, and ore-fluids geochemistry, we propose that the Jianbeigou deposit can be classified as a magmatic–hydrothermal lode gold deposit. Gold mineralization on the southern margin of the North China Craton is related to Early Cretaceous magmatism and formed in an extensional setting.展开更多
The Mibei gold deposit,located in the southwestern part of the Xuefengshan uplift zone,the middle section of the Jiangnan orogenic belt in southern China,has estimated gold resources of approximately seven tons.This d...The Mibei gold deposit,located in the southwestern part of the Xuefengshan uplift zone,the middle section of the Jiangnan orogenic belt in southern China,has estimated gold resources of approximately seven tons.This deposit is primarily a quartz vein-type gold deposit,with ore bodies occurring mainly within Neoproterozoic metasediments.The main metallic minerals in the ore are pyrite,chalcopyrite,and arsenopyrite.In this study,the petrography and microthermometry of ore-forming fluid inclusions,oxygen isotopes of gold-bearing quartz,and sulfur isotopes of goldbearing sulfides and arsenopyrite were analyzed.Three types of fluid inclusions were identified:type Ⅰa three-phase inclusions comprising vapor and two phases of liquids(V_(CO_(2))+L_(CO_(2))+L_(H2O)),type Ⅰb two-phase liquids(L_(CO_(2))+L_(H2O)),typeⅡ two-phase vapor-rich inclusions(V/V+L> 50%),and type Ⅲ pure liquid inclusions.Type Ⅰ inclusions were heated uniformly to the liquid phase,type Ⅱ inclusions were heated uniformly to the gas phase,and type Ⅲ inclusions were heated without change.In general,the temperature range of homogenization to liquid phase of fluid inclusions in the Mibei gold deposit is 204-227℃.The salinity of the inclusion ranges from 4.6 to 12.2 wt% NaCl equiv.The δ~(18)O_(SMOW) of gold-bearing quartz varies from 16.9‰ to 17.5‰.The δ~(18)O_(H2O) of gold-bearing quartz are varied from 6.5‰ to 7.5‰.The δ~(34)S values of gold-bearing pyrite range from 1.7‰ to 6.8‰.The δ~(34)S values of gold-bearing arsenopy rite range from 5.6%o to 5.9‰.Theδ~(34)S values of pyrite from wall rocks slate range from 6.4‰ to 11.6‰.This evidence implies that the ore-forming fluids of the Mibei gold deposit originated from magmatic-hydrothermal processes,mixing with minor S from the surrounding metasediments.Combined with the evolution of the Jiangnan orogenic belt,due to the magmatic and tectonic activities of the Xuefengshan uplift during the Caledonian period,the fault seal mechanism controlled the ore-forming process.Overall,the Mibei gold deposit is more akin to a magmatic-hydrothermal gold deposit.展开更多
Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,20...Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023).展开更多
The pressing environmental concerns and the depletion of fossil fuel reserves necessitate a transition toward sustainable energy sources.Ethanol,a renewable biomass-derived fuel,is a promising alternative due to its a...The pressing environmental concerns and the depletion of fossil fuel reserves necessitate a transition toward sustainable energy sources.Ethanol,a renewable biomass-derived fuel,is a promising alternative due to its availability and high energy density.This study investigates the synthesis of gold nanoparticles(Au NPs)via a square-wave pulse deposition technique,aiming to enhance catalytic activity for ethanol electrooxidation.By varying pulse durations,we were able to exert precise control over Au NP size and distribution without stabilizing agents.Characterization using field emission scanning electron microscopy and X-ray diffraction techniques confirmed the formation of clustered nanoparticles of metallic gold phase.Electrochemical characteristics analyses revealed that Au NPs synthesized with a 900 ms pulse duration exhibited the lowest charge transfer resistance and the highest electrochemically active surface area.The electrocatalytic performance test of these Au NPs demonstrated an anodic current density of 2.5 mA cm^-(2)and a Tafel slope of 78 mV dec^(-1),indicating superior catalytic performance and reaction kinetics.Additionally,the Au NPs showed high resistance to poisoning,as evidenced by a low j_(b)/j_(f)ratio of 0.28 and stable chronoamperometric response.These findings underscore the potential of this synthesis method for producing high-performance electrocatalysts utilized in exploiting ethanol's potential as an environmentally friendly energy carrier.展开更多
Dongguashan deposit is a large porphyry-skarn copper(gold) deposit in Tongling ore district. The Qingshanjiao intermediate acid intrusion of Yanshanian had a direct genetic relationship with mineralization. The magm...Dongguashan deposit is a large porphyry-skarn copper(gold) deposit in Tongling ore district. The Qingshanjiao intermediate acid intrusion of Yanshanian had a direct genetic relationship with mineralization. The magma origin, rock-forming dynamic background and rock-forming process were studied, and the rock-forming mechanism of Qingshanjiao intrusion was discussed, based on geological characteristics, detailed observation of petrography and systematic investigation of petrochemistry, trace elements and REE geochemistry characteristics of Qingshanjiao intrusion. The results show that Qingshanjiao rock body belongs to high-K calc-alkaline series with higher LREE elements, Th, Rb and Sr abundance, but depleted in HREE elements, Ba, Nb and Ta. The primary magma originated from the mantle-crust mixtures which were caused by basaltic magma of mantle mixing with syenite magma of partial melting of the lower crust, and the formation environment of Qingshanjiao intrusion was emplaced in the transitional environment from compression to extension. The Harker diagram and hybrid structures of plagioclase and potassium feldspar indicate that the fractional crystallization occurred in the process of magmatic evolution. The petrochemistry, trace elements and REE geochemistry characteristics indicate that the magma was contaminated by crustal material during the rock-forming. These results suggested that the Qingshanjiao intrusion was formed by fractional crystallization and assimilation and hybridization of mantle-crust magma in the transitional environment from compression to extensional.展开更多
The recently discovered Damoqujia (大磨曲家) gold deposit is a large shear zone-hosted gold deposit of disseminated sulphides located in the north of the Zhaoping (招平) fault zone, Jiaodong (胶东) gold province...The recently discovered Damoqujia (大磨曲家) gold deposit is a large shear zone-hosted gold deposit of disseminated sulphides located in the north of the Zhaoping (招平) fault zone, Jiaodong (胶东) gold province, China. In order to distinguish the temperature range of cluster inclusions from different mineralization stages and measure their compositions, 16 fluid inclusions and 5 isotopic geochemistry samples were collected for this study. Corresponding to different mineralization stages, the multirange peaks of quartz decrepitation temperature (250-270, 310-360 and 380-430℃) indicate that the activity of ore-forming fluids is characterized by multistage. The ore-forming fluids were predominantly of high-temperature fluid system (HTFS) by CO2-rich, and SO4^2--K^+ type magmatic fluid during the early stage of mineralization and were subsequently affected by low-temperature fluid system (LTFS) of CH4-rich, and Cl^--Na^+/Ca^2+ type meteoric fluid during the late stage of mineralization. Gold is transferred by Au-HS^- complex in the HTFS, and Au-Cl^- complex can be more important in the LTFS. The transition of fluids from deeper to shallow environments results in mixing between the HTFS and LTFS, which might be one of the most key reasons for gold precipitation and large-scale mineralization. The ore-forming fluids are characterized by high-temperature, strong-activity, and superimposed mineralization, so that there is a great probability of forming large and rich ore deposit in the Damoqujia gold deposit. The main bodies are preserved and extend toward deeper parts, thereby suggesting a great potential in future.展开更多
The Jiaodong gold deposits are currently the most important gold resources(with Au reserves of〉4000 t) in China,and the leading gold-producing country globally(with Au production of ~428 t in2013).Jiaodong is al...The Jiaodong gold deposits are currently the most important gold resources(with Au reserves of〉4000 t) in China,and the leading gold-producing country globally(with Au production of ~428 t in2013).Jiaodong is also considered as perhaps the only world-class to giant gold accumulation on the planet where relatively young gold ores(ca.130-120 Ma) were deposited in rocks that are 2 Ga older.The Xincheng world-class high-grade gold deposit,with a proven reserve of 〉200 t gold,is one of the largest deposits in the giant gold province of the Jiaodong Peninsula.It is located in the northwestern part of the jiaobei Uplift,and hosted by ca.132-123 Ma Xincheng quartz monzonites and monzogranites.Ore zones are structurally controlled by the NE-trending and NW-dipping Jiaojia Fault and subsidiary faults,and are mainly restricted to the footwall of the fault.The dominant disseminated- and stockworkstyle ores are associated with strong sericitization,silicification,sulfidation and K-feldspathization,and minor carbonate wallrock alteration halos.The four mineralization stages are pyrite-quartz-sericite(stage 1),quartz-pyrite(stage 2),quartz-polysulfide(stage 3) and quartz-carbonate(stage 4).Gold occurs dominantly as electrum,with lesser amounts of sulfide-hosted native gold and rare native silver and argentite,normally associated with pyrite,chalcopyrite,galena and sphalerite:the latter with proven resources of about 105 t Ag,713 t Cu,and 5100 t S.There are three types of ore-related fluid inclusions:type 1 aqueous-carbonate(H2O-CO2),type 2aqueous(liquid H2O+vapor H2O),and type 3 CO2(liquid CO2 and vapor CO2) inclusions.Homogenization temperatures range from 221 to 304℃ for type 1 inclusions,with salinities of 2.4-13.3 wt.%NaCl eq.,and bulk densities of 0.858-1.022 g/cm~3.The δ~(34)S(CDT) values of hydrothermal sulfides are 4.3-10.6‰and δ~(18)O values of hydrothermal quartz have a median value of 13.0‰.δD values of fluid inclusions in hydrothermal quartz have a median value of-75‰.Calculated δ~(18)Owater has a median value of 5.2‰.The timing of gold mineralization at the Xincheng gold deposit is younger than 123±1 Ma,and likely between 120.9 and 119.9 Ma.A minerals system genetic model for the probable epizonal orogenic Xincheng deposit suggests an initial medium temperature,CO2-rich,and low salinity H2O-CO2 deeply sourced metamorphic ore fluid associated with dehydration and decarbonization of subducting Paleo-Pacific lithosphere.The Jiaojia Fault constrained the migration of ore-forming fluids and metals at the brittle-ductile transition.Fluid immiscibility,caused by episodic pressure drops,led to significant high-grade gold deposition in the giant Xincheng gold deposit.展开更多
It is quite evident that it is not anomalous metal transport,nor unique depositional conditions,nor any single factor at the deposit scale,that dictates whether a mineral deposit becomes a giant or not.A hierarchical ...It is quite evident that it is not anomalous metal transport,nor unique depositional conditions,nor any single factor at the deposit scale,that dictates whether a mineral deposit becomes a giant or not.A hierarchical approach thus is required to progressively examine controlling parameters at successively decreasing scales in the total mineral system to understand the location of giant gold deposits in non-arc environments.For giant orogenic,intrusion-related gold systems(IRGS) and Carlin-type gold deposits and iron oxide-copper-gold(IOCG) deposits,there are common factors among all of these at the lithospheric to crustal scale.All are sited in giant gold provinces controlled by complex fundamental fault or shear zones that follow craton margins or,in the case of most Phanerozoic orogenic giants,define the primary suture zones between tectonic terranes.Giant provinces of IRGS,IOCG,and Carlin-type deposits require melting of metasomatized lithosphere beneath craton margins with ascent of hybrid lamprophyric to granitic magmas and associated heat flux to generate the giant province.The IRGS and IOCG deposits require direct exsolution of volatile-rich magmatic-hydrothermal fluids,whereas the association of such melts with Carlin-type ores is more indirect and enigmatic.Giant orogenic gold provinces show no direct relationship to such magmatism.forming from metamorphic fluids,but show an indirect relationship to lamprophyres that reflect the mantle connectivity of controlling first-order structures.In contrast to their province scale similarities,the different giant gold deposit styles show contrasting critical controls at the district to deposit scale.For orogenic gold deposits,the giants appear to have formed by conjunction of a greater number of parameters to those that control smaller deposits,with resultant geometrical and lithostratigraphic complexity as a guide to their location.There are few giant IRGS due to their inferior fluid-flux systems relative to orogenic gold deposits,and those few giants are essentially preservational exceptions.Many Carlin-type deposits are giants due to the exceptional conjunction of both structural and lithological parameters that caused reactive and permeable rocks,enriched in syngenetic gold,to be located below an impermeable cap along antiformal "trends".Hydrocarbons probably played an important role in concentrating metal.The supergiant Post-Betze deposit has additional ore zones in strain heterogeneities surrounding the pre-gold Goldstrike stock.All unequivocal IOCG deposits are giant or near-giant deposits in terms of gold-equivalent resources,partly due to economic factors for this relatively poorly understood,low Cu-Au grade deposit type.The supergiant Olympic Dam deposit,the most shallowly formed deposit among the larger IOCGs,probably owes its origin to eruption of volatile-rich hybrid magma at surface,with formation of a large maar and intense and widespread brecciation,alteration and Cu-Au-U deposition in a huge rock volume.展开更多
The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-...The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-Pb dating of single zircon from granite, tracing of H and O isotopes and studies on the mineralogy and texture of spots and bleached alteration developed in wall rocks, this paper focuses the relations between gold deposits and granite to clarify the origin of gold deposits and the metallogenesis in the tectonic evolution of the Qinling Orogenic Belt. The comprehensive studies show that the age of the granite (148.1-244 Ma) is identical with that of the gold deposits (131.91-232.56 Ma). It is suggested that the granite has close temporal, spatial and genetic relationship with the gold deposits. The granite provides a heat source, water source and considerable amount of ore-forming material. Finally, it is concluded that the orogeny by collision, emplacement of the granite and positioning of the gold deposits represent a successive process. Both the granite and gold deposits resulted from the syn-orogeny and post-orogeny tectonic evolution.展开更多
In the light of field investigation, microscopic study, X\|ray phase analysis and mineral infrared spectral analysis, it is considered that laumontitization is of extensive occurrence in the Axi gold orefield. The dev...In the light of field investigation, microscopic study, X\|ray phase analysis and mineral infrared spectral analysis, it is considered that laumontitization is of extensive occurrence in the Axi gold orefield. The development of laumontitization and its relationship to mineralization show that the laumontitization appeared mainly at the top of and in the periphery of orebodies, and occurred at the edge of the epithermal system or at the late stage of epithermal system evolution. Therefore, laumontitization can be used as an exploration indicator of epithermal gold deposits. The fluids responsible for laumontitization in the Axi gold orefield are similar to those producing hot spring\|type gold deposits or those from modern geothermal fields. Epithermal mineralization of the Axi gold deposit was dated at Carboniferous, indicating that the West Tianshan of China is a region favorable to epithermal\|type gold mineralization and preservation. Hence the West Tianshan of China is a target area for exploring epithermal gold deposits.展开更多
With very few exceptions, orogenic gold deposits formed in subduction-related tectonic settings in accretionary to collisional orogenic belts from Archean to Tertiary times. Their genesis, including metal and fluid so...With very few exceptions, orogenic gold deposits formed in subduction-related tectonic settings in accretionary to collisional orogenic belts from Archean to Tertiary times. Their genesis, including metal and fluid source, fluid pathways, depositional mechanisms, and timing relative to regional structural and metamorphic events, continues to be controversial. However, there is now general agreement that these deposits formed from metamorphic fluids, either from metamorphism of intra-basinal rock sequences or de-volatilization of a subducted sediment wedge, during a change from a compressional to transpressional, less commonly transtensional, stress regime, prior to orogenic collapse. In the case of Archean and Paleoproterozoic deposits, the formation of orogenic gold deposits was one of the last events prior to cratonization. The late timing of orogenic gold deposits within the structural evolution of the host orogen implies that any earlier structures may be mineralized and that the current structural geometry of the gold deposits is equivalent to that at the time of their formation provided that there has been no significant post-gold orogenic overprint. Within the host volcano-sedimentary sequences at the province scale, world-class orogenic gold deposits are most commonly located in second-order structures adjacent to crustal scale faults and shear zones, representing the first-order ore-forming fluid pathways, and whose deep lithospheric connection is marked by lamprophyre intrusions which, however, have no direct genetic association with gold deposition. More specifically, the gold deposits are located adjacent to ~10°-25° district-scale jogs in these crustal-scale faults. These jogs are commonly the site of arrays of ~70° cross faults that accommodate the bending of the more rigid components, for example volcanic rocks and intrusive sills, of the host belts. Rotation of blocks between these accommodation faults causes failure of more competent units and/or reactivation and dilation of pre-existing structures, leading to deposit-scale focussing of ore-fluid and gold deposition.Anticlinal or antiformal fold hinges, particularly those of 'locked-up' folds with ~30° apical angles and overturned back limbs, represent sites of brittle-ductile rock failure and provide one of the more robust parameters for location of orogenic gold deposits.In orogenic belts with abundant pre-gold granitic intrusions, particularly Precambrian granitegreenstone terranes, the boundaries between the rigid granitic bodies and more ductile greenstone sequences are commonly sites of heterogeneous stress and inhomogeneous strain. Thus, contacts between granitic intrusions and volcano-sedimentary sequences are common sites of ore-fluid infiltration and gold deposition. For orogenic gold deposits at deeper crustal levels, ore-forming fluids are commonly focused along strain gradients between more compressional zones where volcano-sedimentary sequences are thinned and relatively more extensional zones where they are thickened. World-class orogenic gold deposits are commonly located in the deformed volcano-sedimentary sequences in such strain gradients adjacent to triple-point junctions defined by the granitic intrusions, or along the zones of assembly of micro-blocks on a regional scale. These repetitive province to district-scale geometrical patterns of structures within the orogenic belts are clearly critical parameters in geology-based exploration targeting for orogenic gold deposits.展开更多
The Bangbu gold deposit is a large orogenic gold deposit in Tibet formed during the AlpineHimalayan collision. Ore bodies(auriferous quartz veins) are controlled by the E-W-trending Qusong-Cuogu-Zhemulang brittle-du...The Bangbu gold deposit is a large orogenic gold deposit in Tibet formed during the AlpineHimalayan collision. Ore bodies(auriferous quartz veins) are controlled by the E-W-trending Qusong-Cuogu-Zhemulang brittle-ductile shear zone. Quartz veins at the deposit can be divided into three types: pre-metallogenic hook-like quartz veins, metallogenic auriferous quartz veins, and postmetallogenic N-S quartz veins. Four stages of mineralization in the auriferous quartz veins have been identified:(1) Stage S1 quartz+coarse-grained sulfides,(2) Stage S2 gold+fine-grained sulfides,(3) Stage S3 quartz+carbonates, and(4) Stage S4 quartz+ greigite. Fluid inclusions indicate the oreforming fluid was CO_2-N_2-CH_4 rich with homogenization temperatures of 170–261°C, salinities 4.34–7.45 wt% Na Cl equivalent. δ^(18)Ofluid(3.98‰–7.18‰) and low δDV-SMOW(-90‰ to-44‰) for auriferous quartz veins suggest ore-forming fluids were mainly metamorphic in origin, with some addition of organic matter. Quartz vein pyrite has δ^(34)SV-CDT values of 1.2‰–3.6‰(an average of 2.2‰), whereas pyrite from phyllite has δ^(34)SV-CDT 5.7‰–9.9‰(an average of 7.4‰). Quartz vein pyrites yield 206Pb/204 Pb ratios of 18.662–18.764, 207Pb/204 Pb 15.650–15.683, and ^(208)Pb/204 Pb 38.901–39.079. These isotopic data indicate Bangbu ore-forming materials were probably derived from the Langjiexue accretionary wedge. 40Ar/39 Ar ages for sericite from auriferous sulfide-quartz veins yield a plateau age of 49.52 ± 0.52 Ma, an isochron age of 50.3 ± 0.31 Ma, suggesting that auriferous veins were formed during the main collisional period of the Tibet-Himalayan orogen(-65–41 Ma).展开更多
The Shangzhuang altered-rock type gold ore deposit is located in the middle segment of and controlled by the Wang'ershan fault zone in the northwestern part of the Jiaodong gold province, China. The deformation evolu...The Shangzhuang altered-rock type gold ore deposit is located in the middle segment of and controlled by the Wang'ershan fault zone in the northwestern part of the Jiaodong gold province, China. The deformation evolution, the structure of strain and stress fields and its ore-controlling effect in the Shangzhuang deposit are discussed in this paper. It is revealed that the deformation evolution has mainly undergone four phases: the early ductile deformation, the second NE-striking horizontal simple shear, the third NE-striking compression-shear and the final NW-striking compression. The mineralization happened during the third stage in which the maximum principal stress gradually transited from NE to NW. The 3-D numerical simulations of the stress field show that, on the condition that the maximum principal stress is NE-striking, the fracture development in the fault zone is favored, while when the maximum principal stress is NW-striking, the fault zone is relatively extensional and it is suitable for the influx and emplacement of ore-forming fluids. The compression-shear strain field during the mineralization is characterized by the λ-type structure, the positive flower structure, etc. Orebodies are mostly equidistantly located in the dilatational spaces, which are distributed in the integral compressional circumstances. And the dilatational spaces are developed where the fault attitude changes or shear joint systems develop. In the overall compression-shear stress field, the strain field bears self-similarity at multiple scales, including the orebody, ore deposit and orefield. The selfsimilarity of the structure comprises the subequidistant distribution of fractures at the same scale and the similar shape of the fractures at various scales. Yet, due to the special geological structure, the orebodies are mostly located in the hanging wall in the Shangzhuang deposit, which is different from most deposits in the Jiaodong gold province. Analyses of the ore-controlling stress and strain fields in the deposit provide an important basis for deposit seeking.展开更多
Orogenic disseminated and Carlin gold deposits share much similarity in alteration and mineralization.The disseminated orogenic Zhenyuan Au deposit along the Ailaoshan shear zone,southeastern Tibet,was selected to cla...Orogenic disseminated and Carlin gold deposits share much similarity in alteration and mineralization.The disseminated orogenic Zhenyuan Au deposit along the Ailaoshan shear zone,southeastern Tibet,was selected to clarify their difference.The alteration and mineralization from the different lithologies,including meta-quartz sandstone,carbonaceous slate,meta-(ultra)mafic rock,quartz porphyry and lamprophyre were researched.According to the mineral assemblage and replacement relationship in all types of host rocks,two reactions show general control on gold deposition:(1) replacement of earlier magnetite by pyrite and carbonaceous material;(2) alteration of biotite and phlogopite phenocrysts in quartz porphyry and lamprophyre into dolomite/ankerite and sericite.Despite the lamprophyre is volumetrically minor and much less fractured than other host rocks,it contains a large portion of Au reserve,indicating that the chemically active lithology has played a more important role in gold precipitation compared to structure.LA-ICP-MS analysis shows that Au mainly occurs as invisible gold in fine-grained pyrite disseminated in the host rocks,with Au content reaching to 258.95 ppm.The diagenetic core of pyrite in meta-quartz sandstone enriched in Co,Ni,Mo,Ag and Hg is wrapped by hydrothermal pyrite enriched in Cu,As,Sb,Au,Tl,Pb and Bi.Different host rock lithology has much impact on the alteration and mineralization features.Carbonate and sericite in altered lamprophyre show they have higher Mg than those developed in other of host rocks denoting that the carbonate and sericite incorporated Mg from phlogopite phenocrysts in the primary lamprophyre during alteration.The ore fluid activated the diagenetic pyrite in meta-quartz sandstone leading the hydrothermal pyrite enriched in Cu,Mo,Ag,Sb,Te,Hg,Tl,Pb and Bi,but the hydrothermal pyrite in meta-(ultra)mafic rock is enriched in Co and Ni as the meta-(ultra)mafic rock host rock contain high content of Co and Ni.However,Au and As shear similar range in both types of host rocks indicating that these two elements most likely come from the deep source fluid rather than the host rocks.It was shown in the disseminated orogenic gold deposit that similar hydrothermal alteration with mineral assemblage of carbonate (mainly dolomite and ankerite),sericite,pyrite and arsenopyrite develops in all types of host rocks.This is different from the Nevada Carlin type,in which alteration is mainly dissolution and silicification of carbonate host rock.On the other hand,Au mainly occur as invisible gold in both disseminated orogenic and Carlin gold deposits.展开更多
The Muruntau gold deposit in the Central Kyzylkum,Uzbekistan is one of the largest single gold deposits worldwide.Data available from the literature are reviewed with the aim to(1) integrate the present knowledge on...The Muruntau gold deposit in the Central Kyzylkum,Uzbekistan is one of the largest single gold deposits worldwide.Data available from the literature are reviewed with the aim to(1) integrate the present knowledge on this unique deposit from Russian and English literature;(2) show the considerable progress made in the understanding of the genesis of the Muruntau deposit during the last decades;and(3) point to problems still open for future research.Deposit formation occurred through a multi-stage process involving sedimentation,regional metamorphism including thrusting,magmatism with formation of hornfels aureoles and several stages of hydrothermal activity.According to recent knowledge,synsedimentary or pure metamorphic formation of gold mineralization seems unlikely.The role of granite magmatism occurring roughly within the same time interval as the main hydrothermal gold precipitation remains uncertain.There are no signs of interaction of matter between the magma(s) and the hydrothermal system(s).On the other hand,there was an intense,high-temperature(above 400 ℃)fluid- wall rock interaction resulting in the formation of gold-bearing,cone-like stockworks with veins,veinlets and gold-bearing metasomatites.Several chemical and isotope indicators hint at an involvement of lower-crustal or mantle-related sources as well as of surface waters in ore formation.Deposit formation through brecciation involving explosion,hydrothermal or tectonic breccias might explain these data.Further investigations on breccia formation as well as on the exact timing of relevant sedimentary,metamorphic,magmatic and hydrothermal events are recommended.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42172093,42202075,and 42302108)the Key Research and Development Project of Xinjiang(No.2023B03015)+1 种基金the Uygur Autonomous Region Tianchi Talent Project,and the Natural Science Foundation of Xinjiang(No.2022D01A344)China Scholarship Council(202304180004)。
文摘The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated with the Anqi fault.This deposit exhibits characteristics typical of a fault-controlled lode system,and the orebodies consist of auriferous quartz veins and altered wall rocks within Early Carboniferous volcano-sedimentary rocks.Three stages of mineralization have been identified in the Hatu gold deposit:the early pyrite-albite-quartz stage,the middle polymetallic sulfides-ankerite-quartz stage,and late quartz-calcite stage.The sulfur isotopic values of pyrite and arsenopyrite vary in a narrow range from-0.8‰to1.3‰and an average of 0.4‰,the near-zeroδ~(34)S values implicate the thorough homogenization of the sulfur isotopes during the metamorphic dehydration of the Early Carboniferous volcano-sedimentary rocks.Lead isotopic results of pyrite and arsenopyrite(^(206)Pb/^(204)Pb=17.889-18.447,^(207)Pb/^(204)Pb=15.492-15.571,^(208)Pb/^(204)Pb=37.802-38.113)are clustered between orogenic and mantle/upper crust lines,indicating that the lead was mainly sourced from the hostrocks within the Early Carboniferous Tailegula Formation.The characteristics of S and Pb isotopes suggest that the ore-forming metals of the Hatu orogenic gold deposit are of metamorphogenic origin,associated with the continental collision between the Yili-Kazakhstan and Siberian plates during the Late Carboniferous.
基金support from several sources,including the Backbone Teacher Training Program(10912-SJGG2021-04233)the Teaching Reform Project of Chengdu University of Technology(JG2130131)+1 种基金the University-Industry Collaborative Education Project,Ministry of Education,China(22097130210756)National Natural Science Foundation of China(42272129).
文摘The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,west of the Baimashan granitic batholith.In order to discern the characteristics of the ore-formingfluids,the underlying mineralization processes,and establish a foundation for the origin of the Yueguang gold depositfluid inclusion micro-thermometry,as well as quartz hydrogen and oxygen isotope analysis,have been carried out on samples obtained from various stages of mineralization.The hydrothermal miner-alization stages within the Yueguang gold deposit can be categorized into three stages:(i)the barren,pre-ore quartz-pyrite stage(Stage Ⅰ),the quartz-pyrite-gold stage(Stage Ⅱ),and the post-ore quartz-carbonate stage(Stage Ⅲ),with the second stage being the main mineralization stage.Thefluid inclusions identified in samples from the main min-eralization stage can predominantly be described with the NaCl–H_(2)O and CO_(2)–NaCl–H_(2)O systems.These inclusions display homogenization temperatures ranging from 158.8 to 334.9℃,and thefluid salinity ranges from 0.3%to 4.0%(wt.%NaCl equiv.).Laser Raman spectroscopy analysis of individual inclusions further reveals the presence of gas-phases such as CO_(2),CH_(4),and N_(2).Isotopic analysis indicatesδ^(18)Ofluid values ranging from 3.95 to 6.7‰ and δDH_(2)O values ranging from-71.9 to-55.7‰.These results indi-cate that the ore-formingfluid of the Yueguang gold deposit belongs to metamorphic hydrothermalfluids of middle-low temperature and low salinity.In the process of ore formation,gold is transported in the form of Au(HS)2-complexes,with gold deposition being driven byfluid immiscibility.Therefore,the Yueguang gold deposit is categorized as an orogenic gold deposit dominated by metamorphic hydrother-malfluid.It may become a new target for gold exploration in the Baimashan region,central Hunan Province.
基金supported by Records of China’s Mineral Geology from the China Geological Survey(DD20190379)the State Key Program of National Natural Science Foundation of China(41730426)the 111 Project of the Ministry of Science and Technology(BP0719021)。
文摘1.Objective The West Qinling Orogen extends east-west over 1500 km and is endowed with dozens of large-super large scale gold deposits.The Zaozigou gold deposit has a proven reserve of 134 t with an average grade of 3.08 g/t thus is one of the largest deposits in the West Qinling Orogen.However,whether the fluid type is metamorphic or magmatichydrothermal and ore-formation processes of the Zaozigou gold deposit are equivocal.Scheelite is a ubiquitous accessory mineral in geologically diverse ore-deposit types and attested to be a strong indicator of ore-forming conditions and oredeposit genesis.
基金This research was funded by the National Natural Science Foundation of China(No.41862007)the Key Disciplines Construction of Kunming University of Science and Technology(No.14078384)the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-093)。
文摘The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla.
基金supported by the National Natural Science Foundation of China(Grant No.41973045)Basic Science and Technology Research Funding of the CAGS(Grant No.JKYZD202312)+1 种基金the National Key Research and Development Project of China(Grant No.2022YFF0800903)National Natural Science Foundation of China(Grant Nos.41802113,42073053,42273073 and 42261144669).
文摘Lamprophyres typically appear in hydrothermal gold deposits.The relationship between lamprophyres and gold deposits is investigated widely.Some researchers suggest that the emplacement of lamprophyres triggers gold mineralization,whereas others hypothesize that the formation of lamprophyres increases the fertility of mantle sources and ore-forming fluids.K-feldspar veins,with ages between those of lamprophyres and gold deposits,appear in lamprophyres in Zhenyuan.Therefore,K-feldspar veins are ideal for investigating the relationship between lamprophyres and gold deposits.Phlogopite in K-feldspar veins has lower Mg#,Ni,and Cr contents and higher TiO2,Li,Ba,Sr,Sc,Zr,Nb,and Cs contents than phlogopite in lamprophyres.The in-situ Sr isotopic values of apatites(0.7063–0.7066)in K-feldspar veins are within the range for apatites(0.7064–0.7078)from lamprophyres.High large-ion lithophile element concentrations and low Nb and Ta concentrations in phlogopite from lamprophyres,in addition to high(87Sr/86Sr)i values of apatite(0.7064–0.7078),indicate that the magma parental to these phlogopite and apatite crystals is derived from an enriched mantle.Kfeldspar veins are genetically correlated with lamprophyres,whereas sulfide mineral assemblage and trace element compositions of pyrite in K-feldspar veins suggest that K-feldspar veins in lamprophyres are not directly related to gold mineralization of the Zhenyuan deposit.
基金jointed supported by National Key Research and Development Program of China (Grant No. 2021YFC2901704)the National Natural Science Foundation of China (Grant No. 41930430)the State Key Laboratory of Lithospheric Evolution, IGGCAS (Grant No. SKL-Z201905)。
文摘The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, including the quartz ± pyrite, quartz-polymetallic sulfide, and quartz-carbonate ± pyrite stages. From the early to late stages, the homogenization temperatures of primary fluid inclusions are 281–362°C, 227–331°C, and 149–261°C, respectively. The corresponding salinities estimated for these fluids are 3.9–9.9 wt%, 0.4–9.4 wt%, and 0.7–7.2 wt% Na Cl equiv. Combined with laser Raman spectroscopy data, the ore-forming fluid belongs to a H_(2)O-CO_(2)-Na Cl ± CH_4 system with medium–low temperature and salinity. The δ~(18)Ofluid and δD values for the quartz veins are-1.0‰ to 6.0‰ and-105‰ to-84‰, respectively, which indicates that the ore-forming fluid is of mixed source, mainly derived from magma, with a contribution from meteoric water. Pyrite has been identified into three generations based on mineral paragenetic sequencing, including Py1, Py2, and Py3. The pyrites have δ~(34)S sulfur isotopic compositions from three stages between 3.7‰ and 8.4‰, indicating that sulfur mainly originated from magma. Te, Bi, Sb, and Cu contents in pyrite were all high and showed a strong correlation with Au concentrations. Native gold and the Au-Ag-Bi telluride minerals were formed concurrently, and the As concentration was low and decoupled from the Au content. Therefore, Te, Bi, Sb and other low-melting point chalcophile elements play an important role for gold mineralization in arsenic-deficient ore-forming fluid. Combined with the geological setting, evolution of pyrite, and ore-fluids geochemistry, we propose that the Jianbeigou deposit can be classified as a magmatic–hydrothermal lode gold deposit. Gold mineralization on the southern margin of the North China Craton is related to Early Cretaceous magmatism and formed in an extensional setting.
基金financially supported by National Natural Science Foundation of China (Grant No. 42273063)the Young Elite Scientists Sponsorship (YESS) Program of the China Association for Science and Technology (Grant No. YESS20220661)。
文摘The Mibei gold deposit,located in the southwestern part of the Xuefengshan uplift zone,the middle section of the Jiangnan orogenic belt in southern China,has estimated gold resources of approximately seven tons.This deposit is primarily a quartz vein-type gold deposit,with ore bodies occurring mainly within Neoproterozoic metasediments.The main metallic minerals in the ore are pyrite,chalcopyrite,and arsenopyrite.In this study,the petrography and microthermometry of ore-forming fluid inclusions,oxygen isotopes of gold-bearing quartz,and sulfur isotopes of goldbearing sulfides and arsenopyrite were analyzed.Three types of fluid inclusions were identified:type Ⅰa three-phase inclusions comprising vapor and two phases of liquids(V_(CO_(2))+L_(CO_(2))+L_(H2O)),type Ⅰb two-phase liquids(L_(CO_(2))+L_(H2O)),typeⅡ two-phase vapor-rich inclusions(V/V+L> 50%),and type Ⅲ pure liquid inclusions.Type Ⅰ inclusions were heated uniformly to the liquid phase,type Ⅱ inclusions were heated uniformly to the gas phase,and type Ⅲ inclusions were heated without change.In general,the temperature range of homogenization to liquid phase of fluid inclusions in the Mibei gold deposit is 204-227℃.The salinity of the inclusion ranges from 4.6 to 12.2 wt% NaCl equiv.The δ~(18)O_(SMOW) of gold-bearing quartz varies from 16.9‰ to 17.5‰.The δ~(18)O_(H2O) of gold-bearing quartz are varied from 6.5‰ to 7.5‰.The δ~(34)S values of gold-bearing pyrite range from 1.7‰ to 6.8‰.The δ~(34)S values of gold-bearing arsenopy rite range from 5.6%o to 5.9‰.Theδ~(34)S values of pyrite from wall rocks slate range from 6.4‰ to 11.6‰.This evidence implies that the ore-forming fluids of the Mibei gold deposit originated from magmatic-hydrothermal processes,mixing with minor S from the surrounding metasediments.Combined with the evolution of the Jiangnan orogenic belt,due to the magmatic and tectonic activities of the Xuefengshan uplift during the Caledonian period,the fault seal mechanism controlled the ore-forming process.Overall,the Mibei gold deposit is more akin to a magmatic-hydrothermal gold deposit.
基金supported by Qinghai Provincial Association for Science and Technology Youth Science and Technology Talent Support Project(Grant No.2023QHSKXRCTJ47)Exploration Foundation of Qinghai Province(Grant No.2023085029ky004)。
文摘Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023).
基金supported by the National Research and Innovation Agency(BRIN)and Lembaga Pengelola Dana Pendidikan(LPDP)Ministry of Finance,Republic of Indonesia through Riset dan Inovasi Untuk Indonesia Maju(RIIM)scheme batch 2 with contract number 1/PG.02.00.PT/LPPM/IV/2024(110/IV/KS/11/2022).
文摘The pressing environmental concerns and the depletion of fossil fuel reserves necessitate a transition toward sustainable energy sources.Ethanol,a renewable biomass-derived fuel,is a promising alternative due to its availability and high energy density.This study investigates the synthesis of gold nanoparticles(Au NPs)via a square-wave pulse deposition technique,aiming to enhance catalytic activity for ethanol electrooxidation.By varying pulse durations,we were able to exert precise control over Au NP size and distribution without stabilizing agents.Characterization using field emission scanning electron microscopy and X-ray diffraction techniques confirmed the formation of clustered nanoparticles of metallic gold phase.Electrochemical characteristics analyses revealed that Au NPs synthesized with a 900 ms pulse duration exhibited the lowest charge transfer resistance and the highest electrochemically active surface area.The electrocatalytic performance test of these Au NPs demonstrated an anodic current density of 2.5 mA cm^-(2)and a Tafel slope of 78 mV dec^(-1),indicating superior catalytic performance and reaction kinetics.Additionally,the Au NPs showed high resistance to poisoning,as evidenced by a low j_(b)/j_(f)ratio of 0.28 and stable chronoamperometric response.These findings underscore the potential of this synthesis method for producing high-performance electrocatalysts utilized in exploiting ethanol's potential as an environmentally friendly energy carrier.
基金Project(20091100704)supported by the Special Funds for Scientific Research of Land and Natural Resources,ChinaProject(2015CX008)supported by the Innovation Driven Plan of Central South University,China
文摘Dongguashan deposit is a large porphyry-skarn copper(gold) deposit in Tongling ore district. The Qingshanjiao intermediate acid intrusion of Yanshanian had a direct genetic relationship with mineralization. The magma origin, rock-forming dynamic background and rock-forming process were studied, and the rock-forming mechanism of Qingshanjiao intrusion was discussed, based on geological characteristics, detailed observation of petrography and systematic investigation of petrochemistry, trace elements and REE geochemistry characteristics of Qingshanjiao intrusion. The results show that Qingshanjiao rock body belongs to high-K calc-alkaline series with higher LREE elements, Th, Rb and Sr abundance, but depleted in HREE elements, Ba, Nb and Ta. The primary magma originated from the mantle-crust mixtures which were caused by basaltic magma of mantle mixing with syenite magma of partial melting of the lower crust, and the formation environment of Qingshanjiao intrusion was emplaced in the transitional environment from compression to extension. The Harker diagram and hybrid structures of plagioclase and potassium feldspar indicate that the fractional crystallization occurred in the process of magmatic evolution. The petrochemistry, trace elements and REE geochemistry characteristics indicate that the magma was contaminated by crustal material during the rock-forming. These results suggested that the Qingshanjiao intrusion was formed by fractional crystallization and assimilation and hybridization of mantle-crust magma in the transitional environment from compression to extensional.
基金supported by the National Natural Science Foundation of China (Nos. 40672064, 40572063)the 973-Project (No. 2006CB403506)Changjiang Scholars and Innovative Research Team in University and 111 Project of the Ministry of Education, China (No. B07011)
文摘The recently discovered Damoqujia (大磨曲家) gold deposit is a large shear zone-hosted gold deposit of disseminated sulphides located in the north of the Zhaoping (招平) fault zone, Jiaodong (胶东) gold province, China. In order to distinguish the temperature range of cluster inclusions from different mineralization stages and measure their compositions, 16 fluid inclusions and 5 isotopic geochemistry samples were collected for this study. Corresponding to different mineralization stages, the multirange peaks of quartz decrepitation temperature (250-270, 310-360 and 380-430℃) indicate that the activity of ore-forming fluids is characterized by multistage. The ore-forming fluids were predominantly of high-temperature fluid system (HTFS) by CO2-rich, and SO4^2--K^+ type magmatic fluid during the early stage of mineralization and were subsequently affected by low-temperature fluid system (LTFS) of CH4-rich, and Cl^--Na^+/Ca^2+ type meteoric fluid during the late stage of mineralization. Gold is transferred by Au-HS^- complex in the HTFS, and Au-Cl^- complex can be more important in the LTFS. The transition of fluids from deeper to shallow environments results in mixing between the HTFS and LTFS, which might be one of the most key reasons for gold precipitation and large-scale mineralization. The ore-forming fluids are characterized by high-temperature, strong-activity, and superimposed mineralization, so that there is a great probability of forming large and rich ore deposit in the Damoqujia gold deposit. The main bodies are preserved and extend toward deeper parts, thereby suggesting a great potential in future.
基金financially supported by the National Natural Science Foundation of China(Grant No.41230311)the National Science and Technology Support Program(Grant No.2011BAB04B09)+1 种基金the Geological Investigation Work Project of China Geological Survey(Grant No.12120114034901)111 Project of China(Grant No.B07011)
文摘The Jiaodong gold deposits are currently the most important gold resources(with Au reserves of〉4000 t) in China,and the leading gold-producing country globally(with Au production of ~428 t in2013).Jiaodong is also considered as perhaps the only world-class to giant gold accumulation on the planet where relatively young gold ores(ca.130-120 Ma) were deposited in rocks that are 2 Ga older.The Xincheng world-class high-grade gold deposit,with a proven reserve of 〉200 t gold,is one of the largest deposits in the giant gold province of the Jiaodong Peninsula.It is located in the northwestern part of the jiaobei Uplift,and hosted by ca.132-123 Ma Xincheng quartz monzonites and monzogranites.Ore zones are structurally controlled by the NE-trending and NW-dipping Jiaojia Fault and subsidiary faults,and are mainly restricted to the footwall of the fault.The dominant disseminated- and stockworkstyle ores are associated with strong sericitization,silicification,sulfidation and K-feldspathization,and minor carbonate wallrock alteration halos.The four mineralization stages are pyrite-quartz-sericite(stage 1),quartz-pyrite(stage 2),quartz-polysulfide(stage 3) and quartz-carbonate(stage 4).Gold occurs dominantly as electrum,with lesser amounts of sulfide-hosted native gold and rare native silver and argentite,normally associated with pyrite,chalcopyrite,galena and sphalerite:the latter with proven resources of about 105 t Ag,713 t Cu,and 5100 t S.There are three types of ore-related fluid inclusions:type 1 aqueous-carbonate(H2O-CO2),type 2aqueous(liquid H2O+vapor H2O),and type 3 CO2(liquid CO2 and vapor CO2) inclusions.Homogenization temperatures range from 221 to 304℃ for type 1 inclusions,with salinities of 2.4-13.3 wt.%NaCl eq.,and bulk densities of 0.858-1.022 g/cm~3.The δ~(34)S(CDT) values of hydrothermal sulfides are 4.3-10.6‰and δ~(18)O values of hydrothermal quartz have a median value of 13.0‰.δD values of fluid inclusions in hydrothermal quartz have a median value of-75‰.Calculated δ~(18)Owater has a median value of 5.2‰.The timing of gold mineralization at the Xincheng gold deposit is younger than 123±1 Ma,and likely between 120.9 and 119.9 Ma.A minerals system genetic model for the probable epizonal orogenic Xincheng deposit suggests an initial medium temperature,CO2-rich,and low salinity H2O-CO2 deeply sourced metamorphic ore fluid associated with dehydration and decarbonization of subducting Paleo-Pacific lithosphere.The Jiaojia Fault constrained the migration of ore-forming fluids and metals at the brittle-ductile transition.Fluid immiscibility,caused by episodic pressure drops,led to significant high-grade gold deposition in the giant Xincheng gold deposit.
基金funded by Talent Award under the 1000 Plan Project from the Chinese Government
文摘It is quite evident that it is not anomalous metal transport,nor unique depositional conditions,nor any single factor at the deposit scale,that dictates whether a mineral deposit becomes a giant or not.A hierarchical approach thus is required to progressively examine controlling parameters at successively decreasing scales in the total mineral system to understand the location of giant gold deposits in non-arc environments.For giant orogenic,intrusion-related gold systems(IRGS) and Carlin-type gold deposits and iron oxide-copper-gold(IOCG) deposits,there are common factors among all of these at the lithospheric to crustal scale.All are sited in giant gold provinces controlled by complex fundamental fault or shear zones that follow craton margins or,in the case of most Phanerozoic orogenic giants,define the primary suture zones between tectonic terranes.Giant provinces of IRGS,IOCG,and Carlin-type deposits require melting of metasomatized lithosphere beneath craton margins with ascent of hybrid lamprophyric to granitic magmas and associated heat flux to generate the giant province.The IRGS and IOCG deposits require direct exsolution of volatile-rich magmatic-hydrothermal fluids,whereas the association of such melts with Carlin-type ores is more indirect and enigmatic.Giant orogenic gold provinces show no direct relationship to such magmatism.forming from metamorphic fluids,but show an indirect relationship to lamprophyres that reflect the mantle connectivity of controlling first-order structures.In contrast to their province scale similarities,the different giant gold deposit styles show contrasting critical controls at the district to deposit scale.For orogenic gold deposits,the giants appear to have formed by conjunction of a greater number of parameters to those that control smaller deposits,with resultant geometrical and lithostratigraphic complexity as a guide to their location.There are few giant IRGS due to their inferior fluid-flux systems relative to orogenic gold deposits,and those few giants are essentially preservational exceptions.Many Carlin-type deposits are giants due to the exceptional conjunction of both structural and lithological parameters that caused reactive and permeable rocks,enriched in syngenetic gold,to be located below an impermeable cap along antiformal "trends".Hydrocarbons probably played an important role in concentrating metal.The supergiant Post-Betze deposit has additional ore zones in strain heterogeneities surrounding the pre-gold Goldstrike stock.All unequivocal IOCG deposits are giant or near-giant deposits in terms of gold-equivalent resources,partly due to economic factors for this relatively poorly understood,low Cu-Au grade deposit type.The supergiant Olympic Dam deposit,the most shallowly formed deposit among the larger IOCGs,probably owes its origin to eruption of volatile-rich hybrid magma at surface,with formation of a large maar and intense and widespread brecciation,alteration and Cu-Au-U deposition in a huge rock volume.
文摘The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-Pb dating of single zircon from granite, tracing of H and O isotopes and studies on the mineralogy and texture of spots and bleached alteration developed in wall rocks, this paper focuses the relations between gold deposits and granite to clarify the origin of gold deposits and the metallogenesis in the tectonic evolution of the Qinling Orogenic Belt. The comprehensive studies show that the age of the granite (148.1-244 Ma) is identical with that of the gold deposits (131.91-232.56 Ma). It is suggested that the granite has close temporal, spatial and genetic relationship with the gold deposits. The granite provides a heat source, water source and considerable amount of ore-forming material. Finally, it is concluded that the orogeny by collision, emplacement of the granite and positioning of the gold deposits represent a successive process. Both the granite and gold deposits resulted from the syn-orogeny and post-orogeny tectonic evolution.
文摘In the light of field investigation, microscopic study, X\|ray phase analysis and mineral infrared spectral analysis, it is considered that laumontitization is of extensive occurrence in the Axi gold orefield. The development of laumontitization and its relationship to mineralization show that the laumontitization appeared mainly at the top of and in the periphery of orebodies, and occurred at the edge of the epithermal system or at the late stage of epithermal system evolution. Therefore, laumontitization can be used as an exploration indicator of epithermal gold deposits. The fluids responsible for laumontitization in the Axi gold orefield are similar to those producing hot spring\|type gold deposits or those from modern geothermal fields. Epithermal mineralization of the Axi gold deposit was dated at Carboniferous, indicating that the West Tianshan of China is a region favorable to epithermal\|type gold mineralization and preservation. Hence the West Tianshan of China is a target area for exploring epithermal gold deposits.
基金financial support provided by the National Natural Science Foundation of China (Grant No. 41702070)
文摘With very few exceptions, orogenic gold deposits formed in subduction-related tectonic settings in accretionary to collisional orogenic belts from Archean to Tertiary times. Their genesis, including metal and fluid source, fluid pathways, depositional mechanisms, and timing relative to regional structural and metamorphic events, continues to be controversial. However, there is now general agreement that these deposits formed from metamorphic fluids, either from metamorphism of intra-basinal rock sequences or de-volatilization of a subducted sediment wedge, during a change from a compressional to transpressional, less commonly transtensional, stress regime, prior to orogenic collapse. In the case of Archean and Paleoproterozoic deposits, the formation of orogenic gold deposits was one of the last events prior to cratonization. The late timing of orogenic gold deposits within the structural evolution of the host orogen implies that any earlier structures may be mineralized and that the current structural geometry of the gold deposits is equivalent to that at the time of their formation provided that there has been no significant post-gold orogenic overprint. Within the host volcano-sedimentary sequences at the province scale, world-class orogenic gold deposits are most commonly located in second-order structures adjacent to crustal scale faults and shear zones, representing the first-order ore-forming fluid pathways, and whose deep lithospheric connection is marked by lamprophyre intrusions which, however, have no direct genetic association with gold deposition. More specifically, the gold deposits are located adjacent to ~10°-25° district-scale jogs in these crustal-scale faults. These jogs are commonly the site of arrays of ~70° cross faults that accommodate the bending of the more rigid components, for example volcanic rocks and intrusive sills, of the host belts. Rotation of blocks between these accommodation faults causes failure of more competent units and/or reactivation and dilation of pre-existing structures, leading to deposit-scale focussing of ore-fluid and gold deposition.Anticlinal or antiformal fold hinges, particularly those of 'locked-up' folds with ~30° apical angles and overturned back limbs, represent sites of brittle-ductile rock failure and provide one of the more robust parameters for location of orogenic gold deposits.In orogenic belts with abundant pre-gold granitic intrusions, particularly Precambrian granitegreenstone terranes, the boundaries between the rigid granitic bodies and more ductile greenstone sequences are commonly sites of heterogeneous stress and inhomogeneous strain. Thus, contacts between granitic intrusions and volcano-sedimentary sequences are common sites of ore-fluid infiltration and gold deposition. For orogenic gold deposits at deeper crustal levels, ore-forming fluids are commonly focused along strain gradients between more compressional zones where volcano-sedimentary sequences are thinned and relatively more extensional zones where they are thickened. World-class orogenic gold deposits are commonly located in the deformed volcano-sedimentary sequences in such strain gradients adjacent to triple-point junctions defined by the granitic intrusions, or along the zones of assembly of micro-blocks on a regional scale. These repetitive province to district-scale geometrical patterns of structures within the orogenic belts are clearly critical parameters in geology-based exploration targeting for orogenic gold deposits.
基金funded by the National Basic Research Program of China(No.2011CB403104)Geological Survey Project of China(No.12120113037901)
文摘The Bangbu gold deposit is a large orogenic gold deposit in Tibet formed during the AlpineHimalayan collision. Ore bodies(auriferous quartz veins) are controlled by the E-W-trending Qusong-Cuogu-Zhemulang brittle-ductile shear zone. Quartz veins at the deposit can be divided into three types: pre-metallogenic hook-like quartz veins, metallogenic auriferous quartz veins, and postmetallogenic N-S quartz veins. Four stages of mineralization in the auriferous quartz veins have been identified:(1) Stage S1 quartz+coarse-grained sulfides,(2) Stage S2 gold+fine-grained sulfides,(3) Stage S3 quartz+carbonates, and(4) Stage S4 quartz+ greigite. Fluid inclusions indicate the oreforming fluid was CO_2-N_2-CH_4 rich with homogenization temperatures of 170–261°C, salinities 4.34–7.45 wt% Na Cl equivalent. δ^(18)Ofluid(3.98‰–7.18‰) and low δDV-SMOW(-90‰ to-44‰) for auriferous quartz veins suggest ore-forming fluids were mainly metamorphic in origin, with some addition of organic matter. Quartz vein pyrite has δ^(34)SV-CDT values of 1.2‰–3.6‰(an average of 2.2‰), whereas pyrite from phyllite has δ^(34)SV-CDT 5.7‰–9.9‰(an average of 7.4‰). Quartz vein pyrites yield 206Pb/204 Pb ratios of 18.662–18.764, 207Pb/204 Pb 15.650–15.683, and ^(208)Pb/204 Pb 38.901–39.079. These isotopic data indicate Bangbu ore-forming materials were probably derived from the Langjiexue accretionary wedge. 40Ar/39 Ar ages for sericite from auriferous sulfide-quartz veins yield a plateau age of 49.52 ± 0.52 Ma, an isochron age of 50.3 ± 0.31 Ma, suggesting that auriferous veins were formed during the main collisional period of the Tibet-Himalayan orogen(-65–41 Ma).
基金This paper is supported by the National Natural Science Foundation of China (Grant Nos. 40572063 and 40272051);the Fostering Plan Fund for Trans-Century Excellent Talents and the Project 111 (No. B07011).
文摘The Shangzhuang altered-rock type gold ore deposit is located in the middle segment of and controlled by the Wang'ershan fault zone in the northwestern part of the Jiaodong gold province, China. The deformation evolution, the structure of strain and stress fields and its ore-controlling effect in the Shangzhuang deposit are discussed in this paper. It is revealed that the deformation evolution has mainly undergone four phases: the early ductile deformation, the second NE-striking horizontal simple shear, the third NE-striking compression-shear and the final NW-striking compression. The mineralization happened during the third stage in which the maximum principal stress gradually transited from NE to NW. The 3-D numerical simulations of the stress field show that, on the condition that the maximum principal stress is NE-striking, the fracture development in the fault zone is favored, while when the maximum principal stress is NW-striking, the fault zone is relatively extensional and it is suitable for the influx and emplacement of ore-forming fluids. The compression-shear strain field during the mineralization is characterized by the λ-type structure, the positive flower structure, etc. Orebodies are mostly equidistantly located in the dilatational spaces, which are distributed in the integral compressional circumstances. And the dilatational spaces are developed where the fault attitude changes or shear joint systems develop. In the overall compression-shear stress field, the strain field bears self-similarity at multiple scales, including the orebody, ore deposit and orefield. The selfsimilarity of the structure comprises the subequidistant distribution of fractures at the same scale and the similar shape of the fractures at various scales. Yet, due to the special geological structure, the orebodies are mostly located in the hanging wall in the Shangzhuang deposit, which is different from most deposits in the Jiaodong gold province. Analyses of the ore-controlling stress and strain fields in the deposit provide an important basis for deposit seeking.
基金jointly supported by the National Key Research and Development Project of China (Grant No.2016YFC0600307)the National Key Basic Research Development Program (973 Program+1 种基金 Grant No.2015CB452606)the fundamental research funds of university teachers(No.53200959708 and No.2-9-2018-126)
文摘Orogenic disseminated and Carlin gold deposits share much similarity in alteration and mineralization.The disseminated orogenic Zhenyuan Au deposit along the Ailaoshan shear zone,southeastern Tibet,was selected to clarify their difference.The alteration and mineralization from the different lithologies,including meta-quartz sandstone,carbonaceous slate,meta-(ultra)mafic rock,quartz porphyry and lamprophyre were researched.According to the mineral assemblage and replacement relationship in all types of host rocks,two reactions show general control on gold deposition:(1) replacement of earlier magnetite by pyrite and carbonaceous material;(2) alteration of biotite and phlogopite phenocrysts in quartz porphyry and lamprophyre into dolomite/ankerite and sericite.Despite the lamprophyre is volumetrically minor and much less fractured than other host rocks,it contains a large portion of Au reserve,indicating that the chemically active lithology has played a more important role in gold precipitation compared to structure.LA-ICP-MS analysis shows that Au mainly occurs as invisible gold in fine-grained pyrite disseminated in the host rocks,with Au content reaching to 258.95 ppm.The diagenetic core of pyrite in meta-quartz sandstone enriched in Co,Ni,Mo,Ag and Hg is wrapped by hydrothermal pyrite enriched in Cu,As,Sb,Au,Tl,Pb and Bi.Different host rock lithology has much impact on the alteration and mineralization features.Carbonate and sericite in altered lamprophyre show they have higher Mg than those developed in other of host rocks denoting that the carbonate and sericite incorporated Mg from phlogopite phenocrysts in the primary lamprophyre during alteration.The ore fluid activated the diagenetic pyrite in meta-quartz sandstone leading the hydrothermal pyrite enriched in Cu,Mo,Ag,Sb,Te,Hg,Tl,Pb and Bi,but the hydrothermal pyrite in meta-(ultra)mafic rock is enriched in Co and Ni as the meta-(ultra)mafic rock host rock contain high content of Co and Ni.However,Au and As shear similar range in both types of host rocks indicating that these two elements most likely come from the deep source fluid rather than the host rocks.It was shown in the disseminated orogenic gold deposit that similar hydrothermal alteration with mineral assemblage of carbonate (mainly dolomite and ankerite),sericite,pyrite and arsenopyrite develops in all types of host rocks.This is different from the Nevada Carlin type,in which alteration is mainly dissolution and silicification of carbonate host rock.On the other hand,Au mainly occur as invisible gold in both disseminated orogenic and Carlin gold deposits.
基金supported by several grantsfrom DAAD,DFG(Wo 489/15-1,15-2KL 692/11-1,11-2)+1 种基金NSERC,NHM CERCAMS,IGCP(IGCP-473)the IGCP project 592 sponsored by IUGS and UNESCO
文摘The Muruntau gold deposit in the Central Kyzylkum,Uzbekistan is one of the largest single gold deposits worldwide.Data available from the literature are reviewed with the aim to(1) integrate the present knowledge on this unique deposit from Russian and English literature;(2) show the considerable progress made in the understanding of the genesis of the Muruntau deposit during the last decades;and(3) point to problems still open for future research.Deposit formation occurred through a multi-stage process involving sedimentation,regional metamorphism including thrusting,magmatism with formation of hornfels aureoles and several stages of hydrothermal activity.According to recent knowledge,synsedimentary or pure metamorphic formation of gold mineralization seems unlikely.The role of granite magmatism occurring roughly within the same time interval as the main hydrothermal gold precipitation remains uncertain.There are no signs of interaction of matter between the magma(s) and the hydrothermal system(s).On the other hand,there was an intense,high-temperature(above 400 ℃)fluid- wall rock interaction resulting in the formation of gold-bearing,cone-like stockworks with veins,veinlets and gold-bearing metasomatites.Several chemical and isotope indicators hint at an involvement of lower-crustal or mantle-related sources as well as of surface waters in ore formation.Deposit formation through brecciation involving explosion,hydrothermal or tectonic breccias might explain these data.Further investigations on breccia formation as well as on the exact timing of relevant sedimentary,metamorphic,magmatic and hydrothermal events are recommended.