The fragile antibody leads to a great challenge as a scaffold to fabricate the luminescent metal nanoclusters using one-pot method.This study presents a stable single-chain anti-body(scFv57R-ATS)for the fabrication of...The fragile antibody leads to a great challenge as a scaffold to fabricate the luminescent metal nanoclusters using one-pot method.This study presents a stable single-chain anti-body(scFv57R-ATS)for the fabrication of luminescent gold nanoclusters(AuNCs@scFv57R-ATS)and a quick,sensitive rabies virus detection in living cells.In this paper,AuNCs@scFv57R-ATS was designed to specifically recognize antigen RV in modified HeLa cells,which promoted the demonstration of metal nanocluster fluorescent probes for antigen targeting and therapy.展开更多
The potential application of gold nanoparticles(GNPs)in biomedicine has been extensively reported.However,there is still too much puzzle about their real face and potential health risks in comparison with the commerci...The potential application of gold nanoparticles(GNPs)in biomedicine has been extensively reported.However,there is still too much puzzle about their real face and potential health risks in comparison with the commercial drug molecules.The emergence of atomically precise gold nanoclusters(APGNCs)provides the opportunity to address the puzzle due to their ultrasmall size,defined molecular formula,editable surface engineering,available structures and unique physicochemical properties including excellent biocompatibility,strong luminescence,enzyme-like activity and efficient renal clearance,et al.Recently,these advantages of APGNCs also endow them promising performances in healthcare such as bioimaging,drug delivery,antibacterial and cancer therapy.Especially,their clear composition and structures like the commercial drug molecules facilitate the study of their functions and the structure-activity relationship in healthcare,which is essential for the guided design of APGNC nanomedicine.Therefore,this review will focus the advantages and recent progress of APGNCs in health care and envision their prospects for the future.展开更多
We demonstrated gold nanoclusters as color tunable emissive light converters for the application of white light emitting diodes (WLEDs). A blue LED providing 460 nm to excite gold nanoclusters mixed with UV curable ma...We demonstrated gold nanoclusters as color tunable emissive light converters for the application of white light emitting diodes (WLEDs). A blue LED providing 460 nm to excite gold nanoclusters mixed with UV curable material generates broad bandwidth emission at the visible range. Increasing the amount of gold nanoclusters, the correlated color temperature of WLEDs tuned from cold white to warm white, and also results in the variation of color rendering index (CRI). The highest CRI in the experiment is 92.展开更多
Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,t...Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,this work reports a feasible procedure to achieve the controllably partial removal of thiolate ligands from unsupported[Au_(25)(PET)_(18)]-nanoclusters with the preservation of the core structure.This procedure shortens the processing duration by rapid heating and cooling on the basis of traditional annealing treatment,avoiding the reconfiguration or agglomeration of Au_(25)nanoclusters,where the degree of dethiolation can be regulated by the control of duration.This work finds that a moderate degree of dethiolation can expose the Au active sites while maintaining the suppression of the competing hydrogen evolution reaction.Consequently,the activity and selectivity towards CO formation in electrochemical CO_(2)reduction reaction of Au_(25)nanoclusters can be promoted.This work provides a new approach for the removal of thiolate ligands from atomically precise gold nanoclusters.展开更多
The development of a simple and accurate quantitative method for the determination of 6-mercaptopurine (6-MP) is of great importance because of its serious side effects. Ratiometric fluorescence (RF) sensors are not s...The development of a simple and accurate quantitative method for the determination of 6-mercaptopurine (6-MP) is of great importance because of its serious side effects. Ratiometric fluorescence (RF) sensors are not subject to interference from environmental factors, and exhibit enhanced precision and accuracy. Therefore, a novel RF sensor for the selective detection of 6-MP was developed. The present work reports a sensitive and selective RF sensor for the detection of 6-mercaptopurine, by hybridizing carbon nanodots (CDots) and gold nanoclusters (AuNCs) capped with bovine serum albumin (BSA). The CDots serve as the reference signal and the AuNCs as the reporter. On addition of the 6-MP, AuNCs formed aggregates, because the existing cross-links within the AuNCs and BSA structure were broken in favour of the Au-S bonds, which can enhance the fluorescence of AuNCs, while the fluorescence of CDots is stable against 6-MP, leading to distinct ratiometric fluorescence changes when exposed to 6-MP. 6-MP could be detected in the range of 0 - 30.22 μM with a detection limit of 54 nM. The developed sensor was applied for the determination of 6-MP in human serum samples and satisfactory results were obtained.展开更多
Recent progress in the research of atomically-precise metal nanoclusters has identified a series of exceptionally stable nanoclusters with specific chemical compositions. Structural determination on such "magic s...Recent progress in the research of atomically-precise metal nanoclusters has identified a series of exceptionally stable nanoclusters with specific chemical compositions. Structural determination on such "magic size" nanoclusters revealed a variety of unique structures such as decahedron, icosahedron, as well as hexagonal close packing(hcp) and body-centered cubic(bcc) packing arrangements in gold nanoclusters, which are largely different from the face-centered cubic(fcc) structure in conventional gold nanoparticles. The characteristic geometrical structures enable the nanoclusters to exhibit interesting properties, and these properties are in close correlation with their atomic structures according to the recent studies. Experimental and theoretical analyses have been applied in the structural identification aiming to clarify the universal principle in the structural evolution of nanoclusters. In this mini-review, we summarize recent studies on periodic structural evolution of fcc-based gold nanoclusters protected by thiolates. A series of nanoclusters exhibit one-dimensional growth along the [001] direction in a layer-by-layer manner from Au_(23)(TBBT)_(20) to Au_(36)(TBBT)_(24),Au_(44)(TBBT)_(28), and to Au_(52)(TBBT)_(32)(TBBT: 4-tert-butylbenzenethiolate). The optical properties of these nanoclusters also evolve periodically based on steady-state and ultrafast spectroscopy. In addition, two-dimensional growth from Au_(44)(TBBT)_(28) toward both [100] and [010] directions leads to the Au_(92)(TBBT)_(44) nanocluster, and the recently reported Au_(52)(PET)_(32)(PET: 2-phenylethanethiol) also follows this growth pattern with partial removal of the layer. Theoretical predictions of relevant fcc nanoclusters include Au_(60)(SCH_3)_(36), Au_(68)(SCH_3)_(40), Au_(76)(SCH_3)_(44), etc, for the continuation of 1 D growth pattern, as well as Au_(68)(SR)_(38)mediating the 2 D growth pattern from Au_(44)(TBBT)_(28) to Au_(92)(TBBT)_(44). Overall, this mini-review provides guidelines on the rules of structural evolution of fcc gold nanoclusters based on 1 D, 2 D and 3 D growth patterns.展开更多
Ultrasmall gold nanoclusters consisting of 2-4 Au atoms were synthesized and their per- formance in electrocatalytic oxygen reduction reactions (ORR) was examined. These clus- ters were synthesized by exposing AuPPh...Ultrasmall gold nanoclusters consisting of 2-4 Au atoms were synthesized and their per- formance in electrocatalytic oxygen reduction reactions (ORR) was examined. These clus- ters were synthesized by exposing AuPPh3Cl to the aqueous ammonia medium for one week. Electrospray ionization mass spectrometry (ESI-MS), X-ray absorption fihe struc- ture (XAFS), and X-ray photoelectron spectroscopy (XPS) analyses indicate that the as- synthesized gold clusters (abbreviated as Aux) consist of 2-4 Au atoms coordinated by the triphenylphosphine, hydroxyl, and adsorbed oxygen ligands. A glassy carbon disk electrode loaded with the Aux clusters (Aux/GC) was characterized by the cyclic and linear-sweep voltammetry for ORR. The cyclic voltammogram vs. RHE shows the onset potential of 0.87 V, and the kinetic parameters of JK at 0.47 V and the electron-transfer mmlber per oxygen molecule were calculated to be 14.28 mA/cm2 and 3.96 via the Koutecky-Levich equations, respectively.展开更多
The management of infected wounds is always of great significance and urgency in clinical and biomedicalfields.Recent efforts in this area are focusing on the development of functional wound patches with effective antib...The management of infected wounds is always of great significance and urgency in clinical and biomedicalfields.Recent efforts in this area are focusing on the development of functional wound patches with effective antibacterial,drug delivery,and sensor properties.Here,we present novel hyaluronic acid(HA)microneedle patches with these features by encapsulating aminobenzeneboronic acid-modified gold nanoclusters(A-GNCs)for infected wound management.The A-GNCs loaded microneedle patches were derived from negative-mold replication and showed high mechanical strength to penetrate the skin.The release of the A-GNCs was realized by the degradation of HA,and the self-monitor of the released actives was based on the dynamic bright orangefluorescence emitted from A-GNCs under ultravio-let radiation.As the A-GNCs could destroy bacteria membranes,the microneedle patches were with excellent in vitro antibiosis ability.Based on these features,we have demonstrated the bacteria inhibition,residual drug self-monitoring,and wound healing promotion abilities of the microneedle patches in Escherichia coli-or Staphylococcus aureus-infected wound management.These results indicated the great potential of such A-GNCs loaded microneedle patches for clinical applications.展开更多
Coherent vibrational dynamics can be observed in atomically precise gold nanoclusters using femtosecond time-resolved pump-probe spectroscopy.It can not only reveal the coupling between electrons and vibrations,but al...Coherent vibrational dynamics can be observed in atomically precise gold nanoclusters using femtosecond time-resolved pump-probe spectroscopy.It can not only reveal the coupling between electrons and vibrations,but also reflect the mechanical and electronic properties of metal nanoclusters,which holds potential applications in biological sensing and mass detection.Here,we investigated the coherent vibrational dynamics of[Au_(25)(SR)_(18)]^(-)nanoclusters by ultrafast spectroscopy and revealed the origins of thesecoherent vibrations by analyzing their frequency,phase and probe wavelength distributions.Strong coherent oscillations with frequency of 40 cm^(-1) and 80 cm^(-1) can be reproduced in the excited state dynamics of[Au_(25)(SR)_(18)]^(-),which should originate from acoustic vibrations of the Au13 metal core.Phase analysis on the oscillations indicates that the 80 cm^(-1) mode should arise from the frequency modulation of the electronic states while the 40 cm^(-1) mode should originate from the amplitude modulation of the dynamic spectrum.Moreover,it is found that the vibration frequencies of[Au_(25)(SR)_(18)]^(-)obtained in pump-probe measurements are independent of the surface ligands so that they are intrinsic properties of the metal core.These results are of great value to understand the electron-vibration coupling of metal nanoclusters.展开更多
The hierarchical assemblies of precise nanoparticles(NPs)have created materials with emergent properties and functionalities.However,the complex assemblies remain unclear at a precise scale.Here,we show the hierarchic...The hierarchical assemblies of precise nanoparticles(NPs)have created materials with emergent properties and functionalities.However,the complex assemblies remain unclear at a precise scale.Here,we show the hierarchical self-assembly of atomically precise gold nanoclusters(Au NCs)with molecular rotor-based ligands(MRL),featuring a double-layer surface.Compared to two other types of monolayer-protected(MLP)Au NCs,the significantly reduced surface density for MRL Au NCs profoundly influences their assembly behavior within the lattice.Furthermore,the long length of rotor-based ligands and the rotational freedom of the phenyl-rings of rotor-based ligands also facilitate the assembly of NCs.Our works elucidate the hierarchical assembly on a precise scale,suggesting that the rotor-based ligand’s strategy offers promising potential for designing well-defined and more complex structures in supercrystals.展开更多
Gold nanoclusters(AuNCs)with near-infraredⅡ(NIR-Ⅱ)photoluminescence(PL)have emerged as novel bioimaging probes for in vivo disease diagnosis.So far,it still lacks a systematic review focusing on the synthesis,PL tun...Gold nanoclusters(AuNCs)with near-infraredⅡ(NIR-Ⅱ)photoluminescence(PL)have emerged as novel bioimaging probes for in vivo disease diagnosis.So far,it still lacks a systematic review focusing on the synthesis,PL tuning,and in vivo imaging of NIR-Ⅱluminescent AuNCs.In this review,we briefly introduce the synthesis of NIR-Ⅱluminescent AuNCs using various surface ligands.We discuss the origins and properties of NIR-ⅡPL in AuNCs,and summarize the strategies for improving and/or tuning NIR-ⅡPL emissions.We also provide an overview of the recent progress in the application of AuNCs in tumor-targeted imaging,molecular imaging,and other areas(such as the sensitive imaging of bones,vessels,lymph nodes,etc.).Finally,we present the prospects and challenges in the field of NIR-Ⅱluminescent AuNCs and related imaging applications,expecting to offer comprehensive understanding of this field,and thereby deepening and broadening the biological application of AuNCs.展开更多
文摘The fragile antibody leads to a great challenge as a scaffold to fabricate the luminescent metal nanoclusters using one-pot method.This study presents a stable single-chain anti-body(scFv57R-ATS)for the fabrication of luminescent gold nanoclusters(AuNCs@scFv57R-ATS)and a quick,sensitive rabies virus detection in living cells.In this paper,AuNCs@scFv57R-ATS was designed to specifically recognize antigen RV in modified HeLa cells,which promoted the demonstration of metal nanocluster fluorescent probes for antigen targeting and therapy.
基金supported by the National Natural Science Foundation of China(21971246,22371108,22075122)Taishan Scholar Foundation of Shandong Province(tsqn202211242)the Chunhui Program of the Ministry of Education of China(HZKY20220463).
文摘The potential application of gold nanoparticles(GNPs)in biomedicine has been extensively reported.However,there is still too much puzzle about their real face and potential health risks in comparison with the commercial drug molecules.The emergence of atomically precise gold nanoclusters(APGNCs)provides the opportunity to address the puzzle due to their ultrasmall size,defined molecular formula,editable surface engineering,available structures and unique physicochemical properties including excellent biocompatibility,strong luminescence,enzyme-like activity and efficient renal clearance,et al.Recently,these advantages of APGNCs also endow them promising performances in healthcare such as bioimaging,drug delivery,antibacterial and cancer therapy.Especially,their clear composition and structures like the commercial drug molecules facilitate the study of their functions and the structure-activity relationship in healthcare,which is essential for the guided design of APGNC nanomedicine.Therefore,this review will focus the advantages and recent progress of APGNCs in health care and envision their prospects for the future.
文摘We demonstrated gold nanoclusters as color tunable emissive light converters for the application of white light emitting diodes (WLEDs). A blue LED providing 460 nm to excite gold nanoclusters mixed with UV curable material generates broad bandwidth emission at the visible range. Increasing the amount of gold nanoclusters, the correlated color temperature of WLEDs tuned from cold white to warm white, and also results in the variation of color rendering index (CRI). The highest CRI in the experiment is 92.
基金the financial support of the Training Program of the Major Research Plan of the National Natural Science Foundation of China(92061124)the National Natural Science Foundation of China(21975292,21978331,22068008,and 52101186)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(2021A1515010167 and 2022A1515011196)the Guangzhou Key R&D Program/Plan Unveiled Flagship Project(20220602JBGS02)the Guangzhou Basic and Applied Basic Research Project(202201011449)the Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202220 and FC202216)。
文摘Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,this work reports a feasible procedure to achieve the controllably partial removal of thiolate ligands from unsupported[Au_(25)(PET)_(18)]-nanoclusters with the preservation of the core structure.This procedure shortens the processing duration by rapid heating and cooling on the basis of traditional annealing treatment,avoiding the reconfiguration or agglomeration of Au_(25)nanoclusters,where the degree of dethiolation can be regulated by the control of duration.This work finds that a moderate degree of dethiolation can expose the Au active sites while maintaining the suppression of the competing hydrogen evolution reaction.Consequently,the activity and selectivity towards CO formation in electrochemical CO_(2)reduction reaction of Au_(25)nanoclusters can be promoted.This work provides a new approach for the removal of thiolate ligands from atomically precise gold nanoclusters.
基金supported by Carnegie Mellon University (CMU) the Air Force Office of Scientific Research (AFOSR) and the National Institute for Occupational Safety and Health (NIOSH) USA supported by the National Science Foundation-Research Experiences for Undergraduates USA (NSF grant DMR #1005076)
文摘The development of a simple and accurate quantitative method for the determination of 6-mercaptopurine (6-MP) is of great importance because of its serious side effects. Ratiometric fluorescence (RF) sensors are not subject to interference from environmental factors, and exhibit enhanced precision and accuracy. Therefore, a novel RF sensor for the selective detection of 6-MP was developed. The present work reports a sensitive and selective RF sensor for the detection of 6-mercaptopurine, by hybridizing carbon nanodots (CDots) and gold nanoclusters (AuNCs) capped with bovine serum albumin (BSA). The CDots serve as the reference signal and the AuNCs as the reporter. On addition of the 6-MP, AuNCs formed aggregates, because the existing cross-links within the AuNCs and BSA structure were broken in favour of the Au-S bonds, which can enhance the fluorescence of AuNCs, while the fluorescence of CDots is stable against 6-MP, leading to distinct ratiometric fluorescence changes when exposed to 6-MP. 6-MP could be detected in the range of 0 - 30.22 μM with a detection limit of 54 nM. The developed sensor was applied for the determination of 6-MP in human serum samples and satisfactory results were obtained.
基金The project was supported by the Air Force Office of Scientific Research (FA9550-15-1-0154) and the U.S. National Science Foundation (DMREF-0903225).
文摘Recent progress in the research of atomically-precise metal nanoclusters has identified a series of exceptionally stable nanoclusters with specific chemical compositions. Structural determination on such "magic size" nanoclusters revealed a variety of unique structures such as decahedron, icosahedron, as well as hexagonal close packing(hcp) and body-centered cubic(bcc) packing arrangements in gold nanoclusters, which are largely different from the face-centered cubic(fcc) structure in conventional gold nanoparticles. The characteristic geometrical structures enable the nanoclusters to exhibit interesting properties, and these properties are in close correlation with their atomic structures according to the recent studies. Experimental and theoretical analyses have been applied in the structural identification aiming to clarify the universal principle in the structural evolution of nanoclusters. In this mini-review, we summarize recent studies on periodic structural evolution of fcc-based gold nanoclusters protected by thiolates. A series of nanoclusters exhibit one-dimensional growth along the [001] direction in a layer-by-layer manner from Au_(23)(TBBT)_(20) to Au_(36)(TBBT)_(24),Au_(44)(TBBT)_(28), and to Au_(52)(TBBT)_(32)(TBBT: 4-tert-butylbenzenethiolate). The optical properties of these nanoclusters also evolve periodically based on steady-state and ultrafast spectroscopy. In addition, two-dimensional growth from Au_(44)(TBBT)_(28) toward both [100] and [010] directions leads to the Au_(92)(TBBT)_(44) nanocluster, and the recently reported Au_(52)(PET)_(32)(PET: 2-phenylethanethiol) also follows this growth pattern with partial removal of the layer. Theoretical predictions of relevant fcc nanoclusters include Au_(60)(SCH_3)_(36), Au_(68)(SCH_3)_(40), Au_(76)(SCH_3)_(44), etc, for the continuation of 1 D growth pattern, as well as Au_(68)(SR)_(38)mediating the 2 D growth pattern from Au_(44)(TBBT)_(28) to Au_(92)(TBBT)_(44). Overall, this mini-review provides guidelines on the rules of structural evolution of fcc gold nanoclusters based on 1 D, 2 D and 3 D growth patterns.
基金supported by the National Natural Science Foundation of China(No.11475176,No.U1632263,and No.21533007)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.11621063)
文摘Ultrasmall gold nanoclusters consisting of 2-4 Au atoms were synthesized and their per- formance in electrocatalytic oxygen reduction reactions (ORR) was examined. These clus- ters were synthesized by exposing AuPPh3Cl to the aqueous ammonia medium for one week. Electrospray ionization mass spectrometry (ESI-MS), X-ray absorption fihe struc- ture (XAFS), and X-ray photoelectron spectroscopy (XPS) analyses indicate that the as- synthesized gold clusters (abbreviated as Aux) consist of 2-4 Au atoms coordinated by the triphenylphosphine, hydroxyl, and adsorbed oxygen ligands. A glassy carbon disk electrode loaded with the Aux clusters (Aux/GC) was characterized by the cyclic and linear-sweep voltammetry for ORR. The cyclic voltammogram vs. RHE shows the onset potential of 0.87 V, and the kinetic parameters of JK at 0.47 V and the electron-transfer mmlber per oxygen molecule were calculated to be 14.28 mA/cm2 and 3.96 via the Koutecky-Levich equations, respectively.
基金National Key Research and Development Program of China,Grant/Award Number:2020YFA0908200National Natural Science Foundation of China,Grant/Award Numbers:52073060,61927805+1 种基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021B1515120054Shenzhen Fundamental Research Program,Grant/Award Number:JCYJ20210324133214038。
文摘The management of infected wounds is always of great significance and urgency in clinical and biomedicalfields.Recent efforts in this area are focusing on the development of functional wound patches with effective antibacterial,drug delivery,and sensor properties.Here,we present novel hyaluronic acid(HA)microneedle patches with these features by encapsulating aminobenzeneboronic acid-modified gold nanoclusters(A-GNCs)for infected wound management.The A-GNCs loaded microneedle patches were derived from negative-mold replication and showed high mechanical strength to penetrate the skin.The release of the A-GNCs was realized by the degradation of HA,and the self-monitor of the released actives was based on the dynamic bright orangefluorescence emitted from A-GNCs under ultravio-let radiation.As the A-GNCs could destroy bacteria membranes,the microneedle patches were with excellent in vitro antibiosis ability.Based on these features,we have demonstrated the bacteria inhibition,residual drug self-monitoring,and wound healing promotion abilities of the microneedle patches in Escherichia coli-or Staphylococcus aureus-infected wound management.These results indicated the great potential of such A-GNCs loaded microneedle patches for clinical applications.
基金supported by the startup funding from University of Science and Technology of China(KY2340000137)the startup funding from Chinese Academy of Sciences
文摘Coherent vibrational dynamics can be observed in atomically precise gold nanoclusters using femtosecond time-resolved pump-probe spectroscopy.It can not only reveal the coupling between electrons and vibrations,but also reflect the mechanical and electronic properties of metal nanoclusters,which holds potential applications in biological sensing and mass detection.Here,we investigated the coherent vibrational dynamics of[Au_(25)(SR)_(18)]^(-)nanoclusters by ultrafast spectroscopy and revealed the origins of thesecoherent vibrations by analyzing their frequency,phase and probe wavelength distributions.Strong coherent oscillations with frequency of 40 cm^(-1) and 80 cm^(-1) can be reproduced in the excited state dynamics of[Au_(25)(SR)_(18)]^(-),which should originate from acoustic vibrations of the Au13 metal core.Phase analysis on the oscillations indicates that the 80 cm^(-1) mode should arise from the frequency modulation of the electronic states while the 40 cm^(-1) mode should originate from the amplitude modulation of the dynamic spectrum.Moreover,it is found that the vibration frequencies of[Au_(25)(SR)_(18)]^(-)obtained in pump-probe measurements are independent of the surface ligands so that they are intrinsic properties of the metal core.These results are of great value to understand the electron-vibration coupling of metal nanoclusters.
基金supported by the National Key R&D Program of China(No.2023YFC3404200)the National Natural Science Foundation of China(Nos.21974147,22325406)+1 种基金the 2022 Shanghai“Science and Technology Innovation Action Plan”Fundamental Research Project,China(No.22JC1401203)the Science Foundation of the Shanghai Municipal Science and Technology Commission,China(No.21dz2210100).
文摘The hierarchical assemblies of precise nanoparticles(NPs)have created materials with emergent properties and functionalities.However,the complex assemblies remain unclear at a precise scale.Here,we show the hierarchical self-assembly of atomically precise gold nanoclusters(Au NCs)with molecular rotor-based ligands(MRL),featuring a double-layer surface.Compared to two other types of monolayer-protected(MLP)Au NCs,the significantly reduced surface density for MRL Au NCs profoundly influences their assembly behavior within the lattice.Furthermore,the long length of rotor-based ligands and the rotational freedom of the phenyl-rings of rotor-based ligands also facilitate the assembly of NCs.Our works elucidate the hierarchical assembly on a precise scale,suggesting that the rotor-based ligand’s strategy offers promising potential for designing well-defined and more complex structures in supercrystals.
基金supported by the National Key Research&Development Program of China(2020YFA0709900)the National Natural Science Foundation of China(22027805,22274024)+2 种基金the Major Project of Science and Technology of Fujian Province(2020HZ06006)the Young Elite Scientist Sponsorship Program by CAST(YESS20200110)China Postdoctoral Science Foundation(2022M720737,2021T140117)
文摘Gold nanoclusters(AuNCs)with near-infraredⅡ(NIR-Ⅱ)photoluminescence(PL)have emerged as novel bioimaging probes for in vivo disease diagnosis.So far,it still lacks a systematic review focusing on the synthesis,PL tuning,and in vivo imaging of NIR-Ⅱluminescent AuNCs.In this review,we briefly introduce the synthesis of NIR-Ⅱluminescent AuNCs using various surface ligands.We discuss the origins and properties of NIR-ⅡPL in AuNCs,and summarize the strategies for improving and/or tuning NIR-ⅡPL emissions.We also provide an overview of the recent progress in the application of AuNCs in tumor-targeted imaging,molecular imaging,and other areas(such as the sensitive imaging of bones,vessels,lymph nodes,etc.).Finally,we present the prospects and challenges in the field of NIR-Ⅱluminescent AuNCs and related imaging applications,expecting to offer comprehensive understanding of this field,and thereby deepening and broadening the biological application of AuNCs.
基金This work was supported by the National Natural Science Foundation of China(No.21973022)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515012353).