The Shangzhuang altered-rock type gold ore deposit is located in the middle segment of and controlled by the Wang'ershan fault zone in the northwestern part of the Jiaodong gold province, China. The deformation evolu...The Shangzhuang altered-rock type gold ore deposit is located in the middle segment of and controlled by the Wang'ershan fault zone in the northwestern part of the Jiaodong gold province, China. The deformation evolution, the structure of strain and stress fields and its ore-controlling effect in the Shangzhuang deposit are discussed in this paper. It is revealed that the deformation evolution has mainly undergone four phases: the early ductile deformation, the second NE-striking horizontal simple shear, the third NE-striking compression-shear and the final NW-striking compression. The mineralization happened during the third stage in which the maximum principal stress gradually transited from NE to NW. The 3-D numerical simulations of the stress field show that, on the condition that the maximum principal stress is NE-striking, the fracture development in the fault zone is favored, while when the maximum principal stress is NW-striking, the fault zone is relatively extensional and it is suitable for the influx and emplacement of ore-forming fluids. The compression-shear strain field during the mineralization is characterized by the λ-type structure, the positive flower structure, etc. Orebodies are mostly equidistantly located in the dilatational spaces, which are distributed in the integral compressional circumstances. And the dilatational spaces are developed where the fault attitude changes or shear joint systems develop. In the overall compression-shear stress field, the strain field bears self-similarity at multiple scales, including the orebody, ore deposit and orefield. The selfsimilarity of the structure comprises the subequidistant distribution of fractures at the same scale and the similar shape of the fractures at various scales. Yet, due to the special geological structure, the orebodies are mostly located in the hanging wall in the Shangzhuang deposit, which is different from most deposits in the Jiaodong gold province. Analyses of the ore-controlling stress and strain fields in the deposit provide an important basis for deposit seeking.展开更多
The Ailao Mountain is one of the most important metallogenic belts ofpolymetallic deposits in the Sanjiang region, southwestern China. Located in the southern segment of this metallogenic belt, the newly-discovered Ch...The Ailao Mountain is one of the most important metallogenic belts ofpolymetallic deposits in the Sanjiang region, southwestern China. Located in the southern segment of this metallogenic belt, the newly-discovered Chang'an gold deposit is large in scale (Fig. 1A), and has attracted much attention among geologists. The ore-hosted rocks in the district include the Late Ordovician Xiangyang Fm. sandstone and clastic rocks and the Early Silurian Kanglang Fm. dolomite. Affected by the multistage tectonic activities, stocks and dykes of lamprophyre, dolerite, syenite porphyry and orthoclasite are widely exposed, and the orebodies are in symbiosis with or crosscut the dyke rocks.展开更多
Based on comprehensive petrological, geochronological, and geochemical studies, this study analyzed the relationships between the Beiya gold-polymetallic skarn deposit and quartz syenite porphyries, and discussed the ...Based on comprehensive petrological, geochronological, and geochemical studies, this study analyzed the relationships between the Beiya gold-polymetallic skarn deposit and quartz syenite porphyries, and discussed the source(s) and evolution of magmas. Our results suggest that syenite porphyries(i.e. the Wandongshan, the Dashadi, and the Hongnitang porphyries), which formed between the Eocene and the early Oligocene epochs, are the sources for the gold-polymetallic ores at the Beiya deposit. Carbonate rocks(T2 b) of the Triassic Beiya Formation in the ore district provide favorable host space for deposit formation. Fold and fault structures collectively play an important role in ore formation. The contact zone between the porphyries and carbonates, the structurally fractured zone of carbonate and clastic rocks, and the zone with well-developed fractures are the ideal locations for ore bodies. Four types of mineralization have been recognized: 1) porphyry-style stockwork gold–iron(copper) ore, 2) skarn-style gold-iron(copper and lead) ore in the near contact zone, 3) strata-bound, lense-type lead–silver–gold ore in the outer contact zone, and 4) distal vein-type gold–lead–silver ore. Supergene processes led to the formation of oxide ore, such as the weathered and accumulated gold–iron ore, the strata-bound fracture oxide ore, and the structure-controlled vein-type ore. Most of these ore deposits are distributed along the axis of the depressed basin, with the hypogene ore controlling the shape and characteristics of the oxide ore. This study provides critical geology understanding for mineral prospecting scenarios.展开更多
The Qifengcha-Detiangou gold deposit is a medium-sized deposit recently found in Huairou County, Beijing. It belongs to the altered mylonite type with superimposed quartz vein type and is related to the early Yanshani...The Qifengcha-Detiangou gold deposit is a medium-sized deposit recently found in Huairou County, Beijing. It belongs to the altered mylonite type with superimposed quartz vein type and is related to the early Yanshanian magmatic activity. Characterized by multiperiodic activity, the NE-trending Qifengcha fault is a regional ore-controlling structure in the area, and gold mineralization develops only in its southeastern part. Meanwhile, gold mineralization is controlled by the Yunmengshan metamorphic core complex. The nearly N-S- and E-W-trending low-angle detachment faults, reformed by the Qifengcha fault in the northwestern part of the core complex, are the main ore-bearing faults. All discovered gold deposits are located within an area 1.5–4.0 km away from the boundary of the upwelling centre. The N-S- (NNE-) and E-W-trending ore-bearing faults are ductile-brittle structural zones developing in shallow positions and subjected mainly to compressive deformation. The structural ore-controlling effects are as follows. (1) The attitude, shape, and distribution of gold orebodies are controlled by faults. (2) There is a negative correlation between the gold abundance and the magnetic anisotropy (P) of the altered mylonite samples from the deposit, which shows that the gold mineralization is later than the structural deformation. (3) Quartz vein type mineralization is superimposed on altered mylonite type mineralization. (4) In mineralized mylonite, the stronger the ductile shear deformation, the easier the late-stage gold mineralization to occur and the higher the gold abundance. The richest gold mineralization occurs only around the centre of the fault subjected to the strongest deformation.展开更多
The ductile shear zone-type gold deposit is a kind that both the ore-forming mechanism and ore-controlling factors are closely related to the ductile shear zone and its evolution. Ductile shear zone develops in Beisha...The ductile shear zone-type gold deposit is a kind that both the ore-forming mechanism and ore-controlling factors are closely related to the ductile shear zone and its evolution. Ductile shear zone develops in Beishan area, Gansu of Northwest China, and develops especially well in the south belt. The controls of the ductile shear zone on gold deposits are as follows. (1) The regional distribution of gold deposits (and gold spots) is controlled by the ductile shear zone. (2) The ductile-brittle shear zone is formed in the evolution process of ductile shear zone and both are only ore-bearing structures and control the shape, attitude, scale, and distribution of mineralization zones and ore-bodies. (3) Compresso-shear ductile deformation results in that the main kind of gold mineralization is altered mylonite type and the main alteralization is metasomatic. (4) Ore-bearing fracture systems are mainly P-type ones, some D-type and R-type ones, but only individual R'-type and T-type ones. (5) Dynamic differen- tiation and dynamic metamorphic hydrothermal solution resulting from ductile deformation is one of the sources of ore-forming fluid of gold mineralization, and this is identical with that ore-forming materials are mainly from metamorphic rocks, and ore-forming fluid is mainly composed of metamorphic water, and with the fluid inclusion and geo-chemical characteristics of the deposit. (6) There is a negative correlation between the gold abundance and susceptibility anlsotropy (P) of the altered mylonlte samples from the deposit, which shows that the gold mineralization is slightly later than the structural deformation. All above further expound the ore-forming model of the ductile shear zone type of gold deposits.展开更多
Based on quantitative and semi-quantitative mathematical and mechanical analysis of the shape, motion, structural factors, stress field and deformation field of the ore-hosting faults in the Xincheng-Hexi gold deposit...Based on quantitative and semi-quantitative mathematical and mechanical analysis of the shape, motion, structural factors, stress field and deformation field of the ore-hosting faults in the Xincheng-Hexi gold deposit, the ore-controlling features of faults and mineralization mechanism are discussed. It is concluded that the mineralization is controlled by the main faults, subsidiary fractures, joint density, mechanical features and deformation of the faults. The ore bodies are mainly located in the lower part of the convex crest and upper part of the concave trough of the main undulating fault surface. Mineralization is positively correlated to the development of subsidiary fractures and joints, which correspond to zones of low internal stress and high body strain and shear strain. They are favourable positions for mineralization and alteration.展开更多
In recent2 0 years,because of the finding ofmany large- superlargegold deposits,we re- new the theories for prospecting and gain many things and conceptions.The current geo- chemical and gold- forming theories underli...In recent2 0 years,because of the finding ofmany large- superlargegold deposits,we re- new the theories for prospecting and gain many things and conceptions.The current geo- chemical and gold- forming theories underline the importance of the early submarine volcano- sedimentation,metamorphic differention,sedimentation of terrigenous clastics,thermal spring and it’s sedimentation,syngenesis process and other hypergene supplying the source for metallogenic materials.According to the study for source bed(rock) and depsitional for- mation of gold,we find that gold will be gradually enriched and mineralized in source bed (rock) ,because of variousgeologicprocesses,such as regional metamorphism ormigmatiza- tion,geothermal bittern,volcanism. The ore- control of deep and giant fault and ductile shear beltand tectono- flash space is emphasized,especially,we should notice the long- term, succession and multistage of the展开更多
To address the issues for assessing and prospecting the replaceable resource of crisis mines, a geological ore-controlling field model and a mineralization distribution field model were proposed from the viewpoint of ...To address the issues for assessing and prospecting the replaceable resource of crisis mines, a geological ore-controlling field model and a mineralization distribution field model were proposed from the viewpoint of field analysis. By dint of solving the field models through transferring the continuous models into the discrete ones, the relationship between the geological ore-controlling effect field and the mineralization distribution field was analyzed, and the quantitative and located parameters were extracted for describing the geological factors controlling mineralization enrichment. The method was applied to the 3-dimensional localization and quantitative prediction for concealed ore bodies in the depths and margins of the Daehang mine in Guangxi, China, and the 3-dimensional distribution models of mineralization indexes and ore-controlling factors such as magmatic rocks, strata, faults, lithology and folds were built. With the methods of statistical analysis and the non-linear programming, the quantitative index set of the geological ore-controlling factors was obtained. In addition, the stereoscopic located and quantitative prediction models were set up by exploring the relationship between the mineralization indexes and the geological ore-controlling factors. So far, some concealed ore bodies with the resource volume of a medium-sized mineral deposit are found in the deep parts of the Dachang Mine by means of the deep prospecting drills following the prediction results, from which the effectiveness of the predication models and results is proved.展开更多
The Baoshan Cu-Pb-Zn polymetallic deposit is lied in the central Nanling mineralization zone,and belongs to the junction area of the Chenzhou-Linwu fault zone and the Leiyang-Linwu fault zone.It is a significant part ...The Baoshan Cu-Pb-Zn polymetallic deposit is lied in the central Nanling mineralization zone,and belongs to the junction area of the Chenzhou-Linwu fault zone and the Leiyang-Linwu fault zone.It is a significant part of Nanling polymetallic deposit belt.The outcropping stratas consist of upper Devonian Shetianqiao,Xikuangshan Formation,Lower Carboniferous Menggong’ao,Shidengzi,Ceshui,and Zimenqiao Formation.Igneous rocks in the Baoshan ore area mainly comprise granodiorite porphyry.Furthermore,the radio isotopic age ranges from 123 Ma to 183 Ma,belonging to the early to middle Yanshanian.展开更多
Abstract Low-angle faults include those occurring in thrust-nappe structures in a compressive setting and the detachment of metamorphic core complexes in an extensional setting. All low-angle faults have their own par...Abstract Low-angle faults include those occurring in thrust-nappe structures in a compressive setting and the detachment of metamorphic core complexes in an extensional setting. All low-angle faults have their own particularities. The low-angle fault plays an important role in controlling over some endogenetic metallic ore deposits. Based on studies of the Xiaoban gold deposit, Xinzhou gold deposit, and Longfengchang polymetallic ore deposit, and comparisons with other mines, the authors conclude the ore-controlling implications of low-angle faults as follows. (1) Because of high temperature and high pressure, as well as strong ductile deformation, the internal energy of the elements rises in the large-scale deep ductile low-angle faults, which causes the elements to activate and differentiate from the source rocks, forming ore-bearing hydrothermal solution, and bring mineralization to happen. (2) When rising from depths and flowing along the low-angle faults, the ore-bearing hydrothermal solution will alter and replace the tectonites in the fault zone. The rocks of the hanging side and the heading side differ in lithology, texture and structure, which results in changes or dissimilarities of the physical-chemical conditions. This destroys the balance of the hydrothermal solution system and causes the dissolved ore-forming elements to precipitate; as a result, a deposit is formed. Therefore, the meso-shallow ductile-brittle low-angle faults play the role of a geochemical interface in the process of mineralization. (3) Low-angle faults are often one of the important host structures.展开更多
1 Introduction The Lehonglead-zincdeposit is a large-sized Pb-Zn depositnewly found in recent years in the Sichuan-Yunnan-Guizhou Lead-zinc Poly-metallic Mineralization Area,which occurrenceis strictly
1 Introduction The Dongshengmiao deposit is a super-large Zn-Pb polymetallic sulfide deposit which occurring in the Langshan-Zhaertaaishan metallogenic belt,and located in the western margin of the North China Platfor...1 Introduction The Dongshengmiao deposit is a super-large Zn-Pb polymetallic sulfide deposit which occurring in the Langshan-Zhaertaaishan metallogenic belt,and located in the western margin of the North China Platform.The ore-bodies of Dongshengmiao deposits are mainly hosted in the second Formation of Langshan Group.There are some studies on the geological characteristics(Peng et al.,2004),geological and展开更多
Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticl...Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticles,the ultrasmall AuNPs show the unique advantages of both small molecules(e.g.,rapid distribution,renal clearance,low non-specific organ accumulation)and nanoparticles(e.g.,long blood circulation and enhanced permeability and retention effect).The emergence of ultrasmall AuNPs creates significant opportunities to address many challenges in the health field including disease diagnosis,monitoring and treatment.Since the nano–bio interaction dictates the overall biological applications of the ultrasmall AuNPs,this review elucidates the recent advances in the biological interactions and imaging of ultrasmall AuNPs.We begin with the introduction of the factors that influence the cellular interactions of ultrasmall AuNPs.We then discuss the organ interactions,especially focus on the interactions of the liver and kidneys.We further present the recent advances in the tumor interactions of ultrasmall AuNPs.In addition,the imaging performance of the ultrasmall AuNPs is summarized and discussed.Finally,we summarize this review and provide some perspective on the future research direction of the ultrasmall AuNPs,aiming to accelerate their clinical translation.展开更多
1 Introduction The huize Zn-Pb ore district in Yunnan province is locatedinthecentralsouthernofthe Sichuan—Yunnan—GuizhouPb-ZnPoly-metallic Mineralization Area in the southwestern margin of the Yangtze Block,and is ...1 Introduction The huize Zn-Pb ore district in Yunnan province is locatedinthecentralsouthernofthe Sichuan—Yunnan—GuizhouPb-ZnPoly-metallic Mineralization Area in the southwestern margin of the Yangtze Block,and is strictly controlled by fault structures.It has developed to one of the famous production bases of lead&zinc and germanium in China.展开更多
The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are ...The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are located in the Kwademen-Baguiomo shear zone. This mineralization, located only a few kilometers from the Kwademen gold deposit, is uncharacterized and, together with the latter, could constitute a gold potential capable of being economically exploitable. It is in this sense that this work is carried out with a view to characterizing the gold mineralization of the Baguiomo gold panning site. To carry out this work, we have made direct field measurements, combined with microstructures, and combined all this with data from geochemical rock analysis of the basalts that are the main host formations. Geochemical data show that tholeitic basalts formed from a mantle plume that was emplaced in an oceanic plateau context. Calc-alkaline basalts and andesites are comparable to Paleoproterozoic tholeitic basalts (PTH3), which are slightly enriched in light rare earths. Fertility tests show that these basalts concentrate between 3 and 6 ppb of gold at the time of accretion, which is sufficient for remobilization of this primary gold during the Eburnian orogeny to yield a deposit of around 4 - 5 Moz. Gold mineralization is associated with pyrite crystals when the latter are disseminated in the rock mass, whereas it is associated with hematite in quartz veins concordant with S1 shear deformation. It is mainly the pyrite crystals in the pressure shadows that contain the gold grains, whose development would be synchronous with micro-shear zone reactivation during the first phase of D1<sub>B</sub> deformation. The second phase of D2<sub>B</sub> deformation, which is a crenulation or fracture schistosity, does not significantly affect the shear deformation that controls mineralization.展开更多
The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated wi...The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated with the Anqi fault.This deposit exhibits characteristics typical of a fault-controlled lode system,and the orebodies consist of auriferous quartz veins and altered wall rocks within Early Carboniferous volcano-sedimentary rocks.Three stages of mineralization have been identified in the Hatu gold deposit:the early pyrite-albite-quartz stage,the middle polymetallic sulfides-ankerite-quartz stage,and late quartz-calcite stage.The sulfur isotopic values of pyrite and arsenopyrite vary in a narrow range from-0.8‰to1.3‰and an average of 0.4‰,the near-zeroδ~(34)S values implicate the thorough homogenization of the sulfur isotopes during the metamorphic dehydration of the Early Carboniferous volcano-sedimentary rocks.Lead isotopic results of pyrite and arsenopyrite(^(206)Pb/^(204)Pb=17.889-18.447,^(207)Pb/^(204)Pb=15.492-15.571,^(208)Pb/^(204)Pb=37.802-38.113)are clustered between orogenic and mantle/upper crust lines,indicating that the lead was mainly sourced from the hostrocks within the Early Carboniferous Tailegula Formation.The characteristics of S and Pb isotopes suggest that the ore-forming metals of the Hatu orogenic gold deposit are of metamorphogenic origin,associated with the continental collision between the Yili-Kazakhstan and Siberian plates during the Late Carboniferous.展开更多
Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant im...Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant impact on the environment due to inappropriate practices and the use of various chemical substances. This study aims to assess the impact of artisanal gold mining on the quality of water resources in a rural community at Méguet, Burkina Faso. To this end, surface and groundwater samples were collected and analyzed at the BUMIGEB laboratory. Field results show that the waters are slightly alkaline (6.97 < pH < 8.1), weakly mineralized and conductive (124 < EC < 543 μS/cm), with temperatures ranging from 24.6˚C to 31.6˚C. In addition, trace metals (TMEs) analyzed from surface and subsurface waters show very high levels, generally deviating from the levels recommended by WHO guidelines for Burkina Faso. Trace metals contamination of water resources in the commune of Méguet is mainly due to Fe (3.78 - 11.12 mg/kg), Hg (0.03 - 0.29 mg/kg), As (0.01- 6.31 mg/kg) and Pb (0.01 - 3.8 mg/kg). This study can serve as a basis for guiding national environmental policies to protect the water resources of the Méguet mine.展开更多
基金This paper is supported by the National Natural Science Foundation of China (Grant Nos. 40572063 and 40272051);the Fostering Plan Fund for Trans-Century Excellent Talents and the Project 111 (No. B07011).
文摘The Shangzhuang altered-rock type gold ore deposit is located in the middle segment of and controlled by the Wang'ershan fault zone in the northwestern part of the Jiaodong gold province, China. The deformation evolution, the structure of strain and stress fields and its ore-controlling effect in the Shangzhuang deposit are discussed in this paper. It is revealed that the deformation evolution has mainly undergone four phases: the early ductile deformation, the second NE-striking horizontal simple shear, the third NE-striking compression-shear and the final NW-striking compression. The mineralization happened during the third stage in which the maximum principal stress gradually transited from NE to NW. The 3-D numerical simulations of the stress field show that, on the condition that the maximum principal stress is NE-striking, the fracture development in the fault zone is favored, while when the maximum principal stress is NW-striking, the fault zone is relatively extensional and it is suitable for the influx and emplacement of ore-forming fluids. The compression-shear strain field during the mineralization is characterized by the λ-type structure, the positive flower structure, etc. Orebodies are mostly equidistantly located in the dilatational spaces, which are distributed in the integral compressional circumstances. And the dilatational spaces are developed where the fault attitude changes or shear joint systems develop. In the overall compression-shear stress field, the strain field bears self-similarity at multiple scales, including the orebody, ore deposit and orefield. The selfsimilarity of the structure comprises the subequidistant distribution of fractures at the same scale and the similar shape of the fractures at various scales. Yet, due to the special geological structure, the orebodies are mostly located in the hanging wall in the Shangzhuang deposit, which is different from most deposits in the Jiaodong gold province. Analyses of the ore-controlling stress and strain fields in the deposit provide an important basis for deposit seeking.
基金supported by China Geological Survey (Grant No.1212010633901, 12120115024601)
文摘The Ailao Mountain is one of the most important metallogenic belts ofpolymetallic deposits in the Sanjiang region, southwestern China. Located in the southern segment of this metallogenic belt, the newly-discovered Chang'an gold deposit is large in scale (Fig. 1A), and has attracted much attention among geologists. The ore-hosted rocks in the district include the Late Ordovician Xiangyang Fm. sandstone and clastic rocks and the Early Silurian Kanglang Fm. dolomite. Affected by the multistage tectonic activities, stocks and dykes of lamprophyre, dolerite, syenite porphyry and orthoclasite are widely exposed, and the orebodies are in symbiosis with or crosscut the dyke rocks.
基金jointly financially supported by “Yunling Scholars” Research Project from Yunnan Province,China Geological Survey Project(No.DD20160124 and 12120114013501)the National Natural Science Foundation of China(grant No.41602103)the “Study on metallogenic regularities and metallogenic series of gold-polymetallic deposits,Northwestern Yunnan Province” research project(E1107)from Yunnan Gold&Mining Group Co.,Ltd
文摘Based on comprehensive petrological, geochronological, and geochemical studies, this study analyzed the relationships between the Beiya gold-polymetallic skarn deposit and quartz syenite porphyries, and discussed the source(s) and evolution of magmas. Our results suggest that syenite porphyries(i.e. the Wandongshan, the Dashadi, and the Hongnitang porphyries), which formed between the Eocene and the early Oligocene epochs, are the sources for the gold-polymetallic ores at the Beiya deposit. Carbonate rocks(T2 b) of the Triassic Beiya Formation in the ore district provide favorable host space for deposit formation. Fold and fault structures collectively play an important role in ore formation. The contact zone between the porphyries and carbonates, the structurally fractured zone of carbonate and clastic rocks, and the zone with well-developed fractures are the ideal locations for ore bodies. Four types of mineralization have been recognized: 1) porphyry-style stockwork gold–iron(copper) ore, 2) skarn-style gold-iron(copper and lead) ore in the near contact zone, 3) strata-bound, lense-type lead–silver–gold ore in the outer contact zone, and 4) distal vein-type gold–lead–silver ore. Supergene processes led to the formation of oxide ore, such as the weathered and accumulated gold–iron ore, the strata-bound fracture oxide ore, and the structure-controlled vein-type ore. Most of these ore deposits are distributed along the axis of the depressed basin, with the hypogene ore controlling the shape and characteristics of the oxide ore. This study provides critical geology understanding for mineral prospecting scenarios.
基金a partial result of the project“Characteristics and ore-searching indicators of the gold-bearing structure in the Qifengcha-Liulimiao area,Huairou,Beijing”,supported by the directional research fund of the former Ministry of Geology and Mineral Resources.
文摘The Qifengcha-Detiangou gold deposit is a medium-sized deposit recently found in Huairou County, Beijing. It belongs to the altered mylonite type with superimposed quartz vein type and is related to the early Yanshanian magmatic activity. Characterized by multiperiodic activity, the NE-trending Qifengcha fault is a regional ore-controlling structure in the area, and gold mineralization develops only in its southeastern part. Meanwhile, gold mineralization is controlled by the Yunmengshan metamorphic core complex. The nearly N-S- and E-W-trending low-angle detachment faults, reformed by the Qifengcha fault in the northwestern part of the core complex, are the main ore-bearing faults. All discovered gold deposits are located within an area 1.5–4.0 km away from the boundary of the upwelling centre. The N-S- (NNE-) and E-W-trending ore-bearing faults are ductile-brittle structural zones developing in shallow positions and subjected mainly to compressive deformation. The structural ore-controlling effects are as follows. (1) The attitude, shape, and distribution of gold orebodies are controlled by faults. (2) There is a negative correlation between the gold abundance and the magnetic anisotropy (P) of the altered mylonite samples from the deposit, which shows that the gold mineralization is later than the structural deformation. (3) Quartz vein type mineralization is superimposed on altered mylonite type mineralization. (4) In mineralized mylonite, the stronger the ductile shear deformation, the easier the late-stage gold mineralization to occur and the higher the gold abundance. The richest gold mineralization occurs only around the centre of the fault subjected to the strongest deformation.
基金This paper is supported by the National 305 Program (Nos. 2001BA609A-07-02, 2006BAB07B02-04)Research Foundation of former Ministry of Geology and Mineral Re-sources of China (No.96-21)
文摘The ductile shear zone-type gold deposit is a kind that both the ore-forming mechanism and ore-controlling factors are closely related to the ductile shear zone and its evolution. Ductile shear zone develops in Beishan area, Gansu of Northwest China, and develops especially well in the south belt. The controls of the ductile shear zone on gold deposits are as follows. (1) The regional distribution of gold deposits (and gold spots) is controlled by the ductile shear zone. (2) The ductile-brittle shear zone is formed in the evolution process of ductile shear zone and both are only ore-bearing structures and control the shape, attitude, scale, and distribution of mineralization zones and ore-bodies. (3) Compresso-shear ductile deformation results in that the main kind of gold mineralization is altered mylonite type and the main alteralization is metasomatic. (4) Ore-bearing fracture systems are mainly P-type ones, some D-type and R-type ones, but only individual R'-type and T-type ones. (5) Dynamic differen- tiation and dynamic metamorphic hydrothermal solution resulting from ductile deformation is one of the sources of ore-forming fluid of gold mineralization, and this is identical with that ore-forming materials are mainly from metamorphic rocks, and ore-forming fluid is mainly composed of metamorphic water, and with the fluid inclusion and geo-chemical characteristics of the deposit. (6) There is a negative correlation between the gold abundance and susceptibility anlsotropy (P) of the altered mylonlte samples from the deposit, which shows that the gold mineralization is slightly later than the structural deformation. All above further expound the ore-forming model of the ductile shear zone type of gold deposits.
文摘Based on quantitative and semi-quantitative mathematical and mechanical analysis of the shape, motion, structural factors, stress field and deformation field of the ore-hosting faults in the Xincheng-Hexi gold deposit, the ore-controlling features of faults and mineralization mechanism are discussed. It is concluded that the mineralization is controlled by the main faults, subsidiary fractures, joint density, mechanical features and deformation of the faults. The ore bodies are mainly located in the lower part of the convex crest and upper part of the concave trough of the main undulating fault surface. Mineralization is positively correlated to the development of subsidiary fractures and joints, which correspond to zones of low internal stress and high body strain and shear strain. They are favourable positions for mineralization and alteration.
文摘In recent2 0 years,because of the finding ofmany large- superlargegold deposits,we re- new the theories for prospecting and gain many things and conceptions.The current geo- chemical and gold- forming theories underline the importance of the early submarine volcano- sedimentation,metamorphic differention,sedimentation of terrigenous clastics,thermal spring and it’s sedimentation,syngenesis process and other hypergene supplying the source for metallogenic materials.According to the study for source bed(rock) and depsitional for- mation of gold,we find that gold will be gradually enriched and mineralized in source bed (rock) ,because of variousgeologicprocesses,such as regional metamorphism ormigmatiza- tion,geothermal bittern,volcanism. The ore- control of deep and giant fault and ductile shear beltand tectono- flash space is emphasized,especially,we should notice the long- term, succession and multistage of the
基金Project(2007CB416608) supported by the National Basic Research Program of ChinaProject(2006BAB01B07) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period
文摘To address the issues for assessing and prospecting the replaceable resource of crisis mines, a geological ore-controlling field model and a mineralization distribution field model were proposed from the viewpoint of field analysis. By dint of solving the field models through transferring the continuous models into the discrete ones, the relationship between the geological ore-controlling effect field and the mineralization distribution field was analyzed, and the quantitative and located parameters were extracted for describing the geological factors controlling mineralization enrichment. The method was applied to the 3-dimensional localization and quantitative prediction for concealed ore bodies in the depths and margins of the Daehang mine in Guangxi, China, and the 3-dimensional distribution models of mineralization indexes and ore-controlling factors such as magmatic rocks, strata, faults, lithology and folds were built. With the methods of statistical analysis and the non-linear programming, the quantitative index set of the geological ore-controlling factors was obtained. In addition, the stereoscopic located and quantitative prediction models were set up by exploring the relationship between the mineralization indexes and the geological ore-controlling factors. So far, some concealed ore bodies with the resource volume of a medium-sized mineral deposit are found in the deep parts of the Dachang Mine by means of the deep prospecting drills following the prediction results, from which the effectiveness of the predication models and results is proved.
基金Supported by the Program of Superseding Resources Prospecting in Crisis Mines in China(20089927)
文摘The Baoshan Cu-Pb-Zn polymetallic deposit is lied in the central Nanling mineralization zone,and belongs to the junction area of the Chenzhou-Linwu fault zone and the Leiyang-Linwu fault zone.It is a significant part of Nanling polymetallic deposit belt.The outcropping stratas consist of upper Devonian Shetianqiao,Xikuangshan Formation,Lower Carboniferous Menggong’ao,Shidengzi,Ceshui,and Zimenqiao Formation.Igneous rocks in the Baoshan ore area mainly comprise granodiorite porphyry.Furthermore,the radio isotopic age ranges from 123 Ma to 183 Ma,belonging to the early to middle Yanshanian.
文摘Abstract Low-angle faults include those occurring in thrust-nappe structures in a compressive setting and the detachment of metamorphic core complexes in an extensional setting. All low-angle faults have their own particularities. The low-angle fault plays an important role in controlling over some endogenetic metallic ore deposits. Based on studies of the Xiaoban gold deposit, Xinzhou gold deposit, and Longfengchang polymetallic ore deposit, and comparisons with other mines, the authors conclude the ore-controlling implications of low-angle faults as follows. (1) Because of high temperature and high pressure, as well as strong ductile deformation, the internal energy of the elements rises in the large-scale deep ductile low-angle faults, which causes the elements to activate and differentiate from the source rocks, forming ore-bearing hydrothermal solution, and bring mineralization to happen. (2) When rising from depths and flowing along the low-angle faults, the ore-bearing hydrothermal solution will alter and replace the tectonites in the fault zone. The rocks of the hanging side and the heading side differ in lithology, texture and structure, which results in changes or dissimilarities of the physical-chemical conditions. This destroys the balance of the hydrothermal solution system and causes the dissolved ore-forming elements to precipitate; as a result, a deposit is formed. Therefore, the meso-shallow ductile-brittle low-angle faults play the role of a geochemical interface in the process of mineralization. (3) Low-angle faults are often one of the important host structures.
基金supported by the Funds for the programs of the National Natural Science Foundation (Noes. 41572060, U1133602)Projects of YM Lab (2011)Innovation Team of Yunnan province and KMUST (2008,2012)
文摘1 Introduction The Lehonglead-zincdeposit is a large-sized Pb-Zn depositnewly found in recent years in the Sichuan-Yunnan-Guizhou Lead-zinc Poly-metallic Mineralization Area,which occurrenceis strictly
文摘1 Introduction The Dongshengmiao deposit is a super-large Zn-Pb polymetallic sulfide deposit which occurring in the Langshan-Zhaertaaishan metallogenic belt,and located in the western margin of the North China Platform.The ore-bodies of Dongshengmiao deposits are mainly hosted in the second Formation of Langshan Group.There are some studies on the geological characteristics(Peng et al.,2004),geological and
基金the National Natural Science Foundation of China(Grant 22022403 and 22274058)Fundamental Research Funds for the Central Universities.
文摘Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticles,the ultrasmall AuNPs show the unique advantages of both small molecules(e.g.,rapid distribution,renal clearance,low non-specific organ accumulation)and nanoparticles(e.g.,long blood circulation and enhanced permeability and retention effect).The emergence of ultrasmall AuNPs creates significant opportunities to address many challenges in the health field including disease diagnosis,monitoring and treatment.Since the nano–bio interaction dictates the overall biological applications of the ultrasmall AuNPs,this review elucidates the recent advances in the biological interactions and imaging of ultrasmall AuNPs.We begin with the introduction of the factors that influence the cellular interactions of ultrasmall AuNPs.We then discuss the organ interactions,especially focus on the interactions of the liver and kidneys.We further present the recent advances in the tumor interactions of ultrasmall AuNPs.In addition,the imaging performance of the ultrasmall AuNPs is summarized and discussed.Finally,we summarize this review and provide some perspective on the future research direction of the ultrasmall AuNPs,aiming to accelerate their clinical translation.
基金supported by the Funds for the program of the National Natural Science Foundation (Noes. 41572060, U1133602)Projects of YM Lab (2011)Innovation Team of Yunnan province and KMUST (2008,2012)
文摘1 Introduction The huize Zn-Pb ore district in Yunnan province is locatedinthecentralsouthernofthe Sichuan—Yunnan—GuizhouPb-ZnPoly-metallic Mineralization Area in the southwestern margin of the Yangtze Block,and is strictly controlled by fault structures.It has developed to one of the famous production bases of lead&zinc and germanium in China.
文摘The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are located in the Kwademen-Baguiomo shear zone. This mineralization, located only a few kilometers from the Kwademen gold deposit, is uncharacterized and, together with the latter, could constitute a gold potential capable of being economically exploitable. It is in this sense that this work is carried out with a view to characterizing the gold mineralization of the Baguiomo gold panning site. To carry out this work, we have made direct field measurements, combined with microstructures, and combined all this with data from geochemical rock analysis of the basalts that are the main host formations. Geochemical data show that tholeitic basalts formed from a mantle plume that was emplaced in an oceanic plateau context. Calc-alkaline basalts and andesites are comparable to Paleoproterozoic tholeitic basalts (PTH3), which are slightly enriched in light rare earths. Fertility tests show that these basalts concentrate between 3 and 6 ppb of gold at the time of accretion, which is sufficient for remobilization of this primary gold during the Eburnian orogeny to yield a deposit of around 4 - 5 Moz. Gold mineralization is associated with pyrite crystals when the latter are disseminated in the rock mass, whereas it is associated with hematite in quartz veins concordant with S1 shear deformation. It is mainly the pyrite crystals in the pressure shadows that contain the gold grains, whose development would be synchronous with micro-shear zone reactivation during the first phase of D1<sub>B</sub> deformation. The second phase of D2<sub>B</sub> deformation, which is a crenulation or fracture schistosity, does not significantly affect the shear deformation that controls mineralization.
基金supported by the National Natural Science Foundation of China(Nos.42172093,42202075,and 42302108)the Key Research and Development Project of Xinjiang(No.2023B03015)+1 种基金the Uygur Autonomous Region Tianchi Talent Project,and the Natural Science Foundation of Xinjiang(No.2022D01A344)China Scholarship Council(202304180004)。
文摘The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated with the Anqi fault.This deposit exhibits characteristics typical of a fault-controlled lode system,and the orebodies consist of auriferous quartz veins and altered wall rocks within Early Carboniferous volcano-sedimentary rocks.Three stages of mineralization have been identified in the Hatu gold deposit:the early pyrite-albite-quartz stage,the middle polymetallic sulfides-ankerite-quartz stage,and late quartz-calcite stage.The sulfur isotopic values of pyrite and arsenopyrite vary in a narrow range from-0.8‰to1.3‰and an average of 0.4‰,the near-zeroδ~(34)S values implicate the thorough homogenization of the sulfur isotopes during the metamorphic dehydration of the Early Carboniferous volcano-sedimentary rocks.Lead isotopic results of pyrite and arsenopyrite(^(206)Pb/^(204)Pb=17.889-18.447,^(207)Pb/^(204)Pb=15.492-15.571,^(208)Pb/^(204)Pb=37.802-38.113)are clustered between orogenic and mantle/upper crust lines,indicating that the lead was mainly sourced from the hostrocks within the Early Carboniferous Tailegula Formation.The characteristics of S and Pb isotopes suggest that the ore-forming metals of the Hatu orogenic gold deposit are of metamorphogenic origin,associated with the continental collision between the Yili-Kazakhstan and Siberian plates during the Late Carboniferous.
文摘Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant impact on the environment due to inappropriate practices and the use of various chemical substances. This study aims to assess the impact of artisanal gold mining on the quality of water resources in a rural community at Méguet, Burkina Faso. To this end, surface and groundwater samples were collected and analyzed at the BUMIGEB laboratory. Field results show that the waters are slightly alkaline (6.97 < pH < 8.1), weakly mineralized and conductive (124 < EC < 543 μS/cm), with temperatures ranging from 24.6˚C to 31.6˚C. In addition, trace metals (TMEs) analyzed from surface and subsurface waters show very high levels, generally deviating from the levels recommended by WHO guidelines for Burkina Faso. Trace metals contamination of water resources in the commune of Méguet is mainly due to Fe (3.78 - 11.12 mg/kg), Hg (0.03 - 0.29 mg/kg), As (0.01- 6.31 mg/kg) and Pb (0.01 - 3.8 mg/kg). This study can serve as a basis for guiding national environmental policies to protect the water resources of the Méguet mine.