Aggregation of metal nanoparticles plays an important role in surface enhanced Raman scattering (SERS). Here, a strategy of dynamically aggregating/releasing gold nanopartides is demonstrated using a gold-nanofilm-c...Aggregation of metal nanoparticles plays an important role in surface enhanced Raman scattering (SERS). Here, a strategy of dynamically aggregating/releasing gold nanopartides is demonstrated using a gold-nanofilm-coated nanofiber, with the assistance of enhanced optical force and plasmonic photothermal effect. Strong SERS signals of rhodamine 6G are achieved at the hotspots formed in the inter-particle and film-partide nanogaps. The proposed SERS substrate was demonstrated to have a sensitivity of 10-12 M, reliable reproducibility, and good stability.展开更多
基金Open Fund of the Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications(Jinan University)National Natural Science Foundation of China(NSFC)(11274395,11774135,61205165)
文摘Aggregation of metal nanoparticles plays an important role in surface enhanced Raman scattering (SERS). Here, a strategy of dynamically aggregating/releasing gold nanopartides is demonstrated using a gold-nanofilm-coated nanofiber, with the assistance of enhanced optical force and plasmonic photothermal effect. Strong SERS signals of rhodamine 6G are achieved at the hotspots formed in the inter-particle and film-partide nanogaps. The proposed SERS substrate was demonstrated to have a sensitivity of 10-12 M, reliable reproducibility, and good stability.