期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Differential Evolution-Boosted Sine Cosine Golden Eagle Optimizer with Lévy Flight 被引量:1
1
作者 Gang Hu Liuxin Chen +1 位作者 Xupeng Wang Guo Wei 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第6期1850-1885,共36页
Golden eagle optimizer(GEO)is a recently introduced nature-inspired metaheuristic algorithm,which simulates the spiral hunting behavior of golden eagles in nature.Regrettably,the GEO suffers from the challenges of low... Golden eagle optimizer(GEO)is a recently introduced nature-inspired metaheuristic algorithm,which simulates the spiral hunting behavior of golden eagles in nature.Regrettably,the GEO suffers from the challenges of low diversity,slow iteration speed,and stagnation in local optimization when dealing with complicated optimization problems.To ameliorate these deficiencies,an improved hybrid GEO called IGEO,combined with Lévy flight,sine cosine algorithm and differential evolution(DE)strategy,is developed in this paper.The Lévy flight strategy is introduced into the initial stage to increase the diversity of the golden eagle population and make the initial population more abundant;meanwhile,the sine-cosine function can enhance the exploration ability of GEO and decrease the possibility of GEO falling into the local optima.Furthermore,the DE strategy is used in the exploration and exploitation stage to improve accuracy and convergence speed of GEO.Finally,the superiority of the presented IGEO are comprehensively verified by comparing GEO and several state-of-the-art algorithms using(1)the CEC 2017 and CEC 2019 benchmark functions and(2)5 real-world engineering problems respectively.The comparison results demonstrate that the proposed IGEO is a powerful and attractive alternative for solving engineering optimization problems. 展开更多
关键词 golden eagle optimizer Lévy flight Sine cosine algorithm Differential evolution strategy Engineering design Bionic model
原文传递
Adaptive meta-learning extreme learning machine with golden eagle optimization and logistic map for forecasting the incomplete data of solar iradiance 被引量:1
2
作者 Sarunyoo Boriratrit Pradit Fuangfoo +1 位作者 Chitchai Srithapon Rongrit Chatthaworn 《Energy and AI》 2023年第3期36-51,共16页
Solar energy has become crucial in producing electrical energy because it is inexhaustible and sustainable.However,its uncertain generation causes problems in power system operation.Therefore,solar irradiance forecast... Solar energy has become crucial in producing electrical energy because it is inexhaustible and sustainable.However,its uncertain generation causes problems in power system operation.Therefore,solar irradiance forecasting is significant for suitable controlling power system operation,organizing the transmission expansion planning,and dispatching power system generation.Nonetheless,the forecasting performance can be decreased due to the unfitted prediction model and lacked preprocessing.To deal with mentioned issues,this paper pro-poses Meta-Learning Extreme Learning Machine optimized with Golden Eagle Optimization and Logistic Map(MGEL-ELM)and the Same Datetime Interval Averaged Imputation algorithm(SAME)for improving the fore-casting performance of incomplete solar irradiance time series datasets.Thus,the proposed method is not only imputing incomplete forecasting data but also achieving forecasting accuracy.The experimental result of fore-casting solar irradiance dataset in Thailand indicates that the proposed method can achieve the highest coeffi-cient of determination value up to 0.9307 compared to state-of-the-art models.Furthermore,the proposed method consumes less forecasting time than the deep learning model. 展开更多
关键词 Data imputation golden eagle optimization Logistic maps Meta-learning extreme learning machine Renewable energy forecasting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部