Aim: To assess proliferative and apoptotic potential of the seminiferous epithelium cells in relation to Sertoli cell maturation in newborn rats under the influence of estradiol, follicle stimulating hormone (FSH) ...Aim: To assess proliferative and apoptotic potential of the seminiferous epithelium cells in relation to Sertoli cell maturation in newborn rats under the influence of estradiol, follicle stimulating hormone (FSH) or both agents given together. Methods: From postnatal day (PND) 5 to 15 male rats were daily injected with 12.5 μg of 1713-estradiol benzoate (EB) or 7.5 IU of human purified FSH (hFSH) or EB + hFSH or solvents (control). On postnatal day 16, autopsy was performed. Sertoli cell maturation/function was assessed by morphometry. Proliferation of the seminiferous epithelium cells was quantitatively evaluated using immunohistochemical labeling against proliferating cell nuclear antigen and apoptosis using the TUN-EL method. Results: Although EB inhibited Sertoli cell maturation and hFSH was not effective, a pronounced acceleration of Sertoli cell maturation occurred after EB + hFSH. Whereas hFSH stimulated Sertoli cell proliferation, EB or EB + hFSH inhibited Sertoli cell proliferation. All treatments significantly stimulated germ cell proliferation. Apoptosis of Sertoli cells increased 9-fold and germ cells 2-fold after EB, and was not affected by hFSH but was inhibited after EB + hFSH. Conclusion: At puberty, estradiol inhibits Sertoli cell maturation, increases Sertoli and germ cell apoptosis but stimulates germ cell proliferation. Estradiol in synergism with FSH, but neither of the hormones alone, accelerates Sertoli cell maturation associated with an increase in germ cell survival. Estradiol and FSH cooperate to induce seminal tubule maturation and trigger first spermatogenesis.展开更多
The human ovarian mucinous cystadenocarcinoma (hOMC) cells were co-cultured with antisense oligodeoxynucleotide (antisense ODN), nonsense ODN, and follicle-stimulating hormone (FSH) at different concentrations f...The human ovarian mucinous cystadenocarcinoma (hOMC) cells were co-cultured with antisense oligodeoxynucleotide (antisense ODN), nonsense ODN, and follicle-stimulating hormone (FSH) at different concentrations for the purpose of observing the effects of antisense ODN to FSH receptor (FSHR) on the proliferation and apoptosis of cultured hOMC cells in vitro. The inhibitory rates of growth were measured by using MTT method on the 2nd, 4th, 6th, 8th and 10th days after the interference of antisense ODN, nonsense ODN, and FSH, respectively. The apoptotic rates and the cell cycles were determined by means of flow cytometry, the apoptosis indexes were detected by using TUNEL, and the expression of caspase-3 was measured by using SP immunohistochemistry. Compared with that in the control group, the proliferative activity of hOMC cells was increased obviously in FSH groups (P〈0.05 or P〈0.01), decreased distinctly in antisense ODN groups (P〈0.05 or P〈0.01), and unchanged in nonsense ODN groups, respectively. Meanwhile, antisense ODN could significantly antagonize the FSH-promoted cell proliferative activity (P〈0.01). Compared with those in the control group, the apoptotic rates and the expression of caspase-3 were dramatically increased in the mid- and high-dose antisense ODN groups (P〈0.05 or P〈0.01), while the number of cells in G1/G0 phase was significantly decreased and that in S phase distinctly increased (P〈0.01), There was no change in nonsense ODN groups (P〉0.05), It was suggested that FSH may improve the development of hOMC cells, However, antisense ODN could inhibit proliferative activity and the FSH-promoted proliferative activity in hOMC cells, at the same time, antisense ODN could inhibit hOMC cell growth by inducing apoptosis.展开更多
文摘Aim: To assess proliferative and apoptotic potential of the seminiferous epithelium cells in relation to Sertoli cell maturation in newborn rats under the influence of estradiol, follicle stimulating hormone (FSH) or both agents given together. Methods: From postnatal day (PND) 5 to 15 male rats were daily injected with 12.5 μg of 1713-estradiol benzoate (EB) or 7.5 IU of human purified FSH (hFSH) or EB + hFSH or solvents (control). On postnatal day 16, autopsy was performed. Sertoli cell maturation/function was assessed by morphometry. Proliferation of the seminiferous epithelium cells was quantitatively evaluated using immunohistochemical labeling against proliferating cell nuclear antigen and apoptosis using the TUN-EL method. Results: Although EB inhibited Sertoli cell maturation and hFSH was not effective, a pronounced acceleration of Sertoli cell maturation occurred after EB + hFSH. Whereas hFSH stimulated Sertoli cell proliferation, EB or EB + hFSH inhibited Sertoli cell proliferation. All treatments significantly stimulated germ cell proliferation. Apoptosis of Sertoli cells increased 9-fold and germ cells 2-fold after EB, and was not affected by hFSH but was inhibited after EB + hFSH. Conclusion: At puberty, estradiol inhibits Sertoli cell maturation, increases Sertoli and germ cell apoptosis but stimulates germ cell proliferation. Estradiol in synergism with FSH, but neither of the hormones alone, accelerates Sertoli cell maturation associated with an increase in germ cell survival. Estradiol and FSH cooperate to induce seminal tubule maturation and trigger first spermatogenesis.
文摘The human ovarian mucinous cystadenocarcinoma (hOMC) cells were co-cultured with antisense oligodeoxynucleotide (antisense ODN), nonsense ODN, and follicle-stimulating hormone (FSH) at different concentrations for the purpose of observing the effects of antisense ODN to FSH receptor (FSHR) on the proliferation and apoptosis of cultured hOMC cells in vitro. The inhibitory rates of growth were measured by using MTT method on the 2nd, 4th, 6th, 8th and 10th days after the interference of antisense ODN, nonsense ODN, and FSH, respectively. The apoptotic rates and the cell cycles were determined by means of flow cytometry, the apoptosis indexes were detected by using TUNEL, and the expression of caspase-3 was measured by using SP immunohistochemistry. Compared with that in the control group, the proliferative activity of hOMC cells was increased obviously in FSH groups (P〈0.05 or P〈0.01), decreased distinctly in antisense ODN groups (P〈0.05 or P〈0.01), and unchanged in nonsense ODN groups, respectively. Meanwhile, antisense ODN could significantly antagonize the FSH-promoted cell proliferative activity (P〈0.01). Compared with those in the control group, the apoptotic rates and the expression of caspase-3 were dramatically increased in the mid- and high-dose antisense ODN groups (P〈0.05 or P〈0.01), while the number of cells in G1/G0 phase was significantly decreased and that in S phase distinctly increased (P〈0.01), There was no change in nonsense ODN groups (P〉0.05), It was suggested that FSH may improve the development of hOMC cells, However, antisense ODN could inhibit proliferative activity and the FSH-promoted proliferative activity in hOMC cells, at the same time, antisense ODN could inhibit hOMC cell growth by inducing apoptosis.