The Sb6 Te4/VO2 multilayer thin films are prepared by magnetron sputtering and the potential application in phase change memory is investigated in detail. Compared with Sb6 Te4, Sb6 Te4/VO2 multilayer composite thin f...The Sb6 Te4/VO2 multilayer thin films are prepared by magnetron sputtering and the potential application in phase change memory is investigated in detail. Compared with Sb6 Te4, Sb6 Te4/VO2 multilayer composite thin films have higher phase change temperature and crystallization resistance, indicating better thermal stability and less power consumption. Also, Sb6 Te4/VO2 has a broader energy band of 1.58 eV and better data retention (125℃ for 103/). The crystallization is suppressed by the multilayer interfaces in Sbf Te4/VO2 thin film with a smaller rms surface roughness for Sbf Te4/VO2 than monolayer Sb4Te6. The picosecond laser technology is applied to study the phase change speed. A short crystallization time of 5.21 ns is realized for the Sb6Te4 (2nm)/VO2 (8nm) thin film. The Sb6 Te4/VO2 multilayer thin film is a potential and competitive phase change material for its good thermal stability and fast phase change speed.展开更多
Aqueous Zn ion batteries(ZIBs)are promising in energy storage due to the low cost,high safety,and material abundance.The development of metal oxides as the cathode for ZIBs is limited by the strong electrostatic force...Aqueous Zn ion batteries(ZIBs)are promising in energy storage due to the low cost,high safety,and material abundance.The development of metal oxides as the cathode for ZIBs is limited by the strong electrostatic forces between O2−and Zn2+which leads to poor cyclic stability.Herein,Bi2S3 is proposed as a promising cathode material for rechargeable aqueous ZIBs.Improved cyclic stability and fast diffusion of Zn2+is observed.Also,the layered structure of Bi2S3 with the weak van der Waals interaction between layers offers paths for diffusion and occupancy of Zn2+.As a result,the Zn/Bi2S3 battery delivers high capacity of 161 mAh g−1 at 0.2 A g−1 and good cycling stability up to 100 cycles with ca.100%retention.The battery also demonstrates good cyclic performance of ca.80.3%over 2000 cycles at 1 A g−1.The storage mechanism in the Bi2S3 cathode is related to the reversible Zn ion intercalation/extraction reactions and the capacitive contribution.This work indicates that Bi2S3 shows great potential as the cathode of ZIBs with good performance and stability.展开更多
Inkjet 3D printing has potential in the additive manufacturing of electronic circuits and devices.However,inks that can be used for printing layers with T5%>300℃ or hardness>200 MPa have been rarely reported.Cy...Inkjet 3D printing has potential in the additive manufacturing of electronic circuits and devices.However,inks that can be used for printing layers with T5%>300℃ or hardness>200 MPa have been rarely reported.Cyanate ester(CE)polymers have excellent thermal stability,high strength,and low shrinkage compared to other common dielectric inks for inkjet 3D printing,but cannot be quickly shaped by ultraviolet(UV)irradiation or thermal treatment.Combining CEs with UV-curable monomers may be a possible way to accelerate crosslinking,but there are challenges from the adverse effects of the dilution of both monomers.In this study,dielectric inks with acrylate and cyanate moieties were developed.The low viscosity and surface tension of the CE precursor(Bisphenol E cyanate ester)were combined with photocurable acrylate diluent monomers and cross-linker to realize an ink suitable for inkjet 3D printing.An internal dual three-dimensional cross-linked network structure resin was prepared by a combination of photocuring and thermal curing with T5%up to 326.69℃,hardness up to 431.84 MPa,dielectric constant of 2.70 at 8 GHz,and shrinkage of 1.64%.The developed dielectric inks can be applied to the 3D printing of printed circuit boards and other electronic devices that require dielectric properties.展开更多
The development of high-performance and low-cost cathode materials is of great significance for the progress in lithium-ion batteries.The use of Co and even Ni is not conducive to the sustainable and healthy developme...The development of high-performance and low-cost cathode materials is of great significance for the progress in lithium-ion batteries.The use of Co and even Ni is not conducive to the sustainable and healthy development of the power battery industry owing to their high cost and limited resources.Here,we report LiMn_(2)O_(4)integrated with coating and doping by Sn self-segregation.Auger electron energy spectrum and soft X-ray absorption spectrum show that the coating is Sn-rich LiMn_(2)O_(4),with a small Sn doping in the bulk phase.The integration strategy can not only mitigate the Jahn–Teller distortion but also effectively avoid the dissolution of manganese.The as-obtained product demonstrates superior high initial capacities of 124 mAh·g^(-1)and 120 mAh·g^(-1)with the capacity retention of 91.1%and 90.2%at 25℃and55℃after 50 cycles,respectively.This novel material-processing method highlights a new development direction for the progress of cathode materials for lithium-ion batteries.展开更多
There are plenty of issues need to be solved before the practi-cal application of Li-and Mn-rich cathodes,including the detrimental voltage decay and mediocre rate capability,etc.Element doping can e ectively solve th...There are plenty of issues need to be solved before the practi-cal application of Li-and Mn-rich cathodes,including the detrimental voltage decay and mediocre rate capability,etc.Element doping can e ectively solve the above problems,but cause the loss of capacity.The introduction of appropriate defects can compensate the capacity loss;however,it will lead to structural mismatch and stress accumulation.Herein,a three-in-one method that combines cation–polyanion co-doping,defect construction,and stress engineering is pro-posed.The co-doped Na^(+)/SO_(4)^(2-)can stabilize the layer framework and enhance the capacity and voltage stability.The induced defects would activate more reac-tion sites and promote the electrochemical performance.Meanwhile,the unique alternately distributed defect bands and crystal bands structure can alleviate the stress accumulation caused by changes of cell parameters upon cycling.Consequently,the modified sample retains a capacity of 273 mAh g^(-1)with a high-capacity retention of 94.1%after 100 cycles at 0.2 C,and 152 mAh g^(-1)after 1000 cycles at 2 C,the corresponding voltage attenuation is less than 0.907 mV per cycle.展开更多
Porous Pt-Fe bimetallic nanocrystals have been synthesized via self-assembly and can effectively facilitate the synthesis of 2-propanol from acetone. The bimetallic catalyst has three--dimensional channels and shows t...Porous Pt-Fe bimetallic nanocrystals have been synthesized via self-assembly and can effectively facilitate the synthesis of 2-propanol from acetone. The bimetallic catalyst has three--dimensional channels and shows turnover frequencies (TOFs) of up to 972 h^-1 for a continuous process more than 50 h. Preliminary mechanistic studies suggest that the high reactivity is related to the interface consisting of a bimetallic Pt-Fe alloy and Fe2O3-x. An understanding of real catalytic behavior and the catalytic mechanism based on model systems has been shown to help fabricate an improved Pt/Fe3O4 catalyst with increased activity and lifetime which has great potential for large-scale industrial applications.展开更多
In this paper, ultrathin Pt nanowires (Pt NWs) and PtNi alloy nanowires (PtNi NWs) supported on carbon were synthesized as electrocatalysts for oxygen reduction reaction (ORR). Pt and PtNi NWs catalysts composed...In this paper, ultrathin Pt nanowires (Pt NWs) and PtNi alloy nanowires (PtNi NWs) supported on carbon were synthesized as electrocatalysts for oxygen reduction reaction (ORR). Pt and PtNi NWs catalysts composed of interconnected nanoparticles were prepared by using a soft template method with CTAB as the surface active agent. The physical characterization and electrocatalytic perfor- mance of Pt NWs and PtNi NWs catalysts for ORR were investigated and the results were compared with the commercial Pt/C catalyst. The atomic ratio of Pt and Ni in PtNi alloy was approximately 3 to 1. The results show that after alloying with Ni, the binding energy of Pt shifts to higher values, indicating the change of its electronic structure, and that Pt3Ni NWs catalyst has a significantly higher electrocatalytic activity and good stability for ORR as compared to Pt NWs and even Pt/C catalyst. The enhanced electrocatalytic activity of Pt3Ni NWs catalyst is mainly resulted from the downshifted-band center of Pt caused by the interaction between Pt and Ni in the alloy, which facilitates the desorption of oxygen containing species (Oads or OHads) and the release of active sites.展开更多
A novel NiB deposited layered double hydroxide (LDH) coated ferroferric oxide (Fe304@LDH@NiB) magnet- ic core-shell nanocomposite was successfully fabricated by the combination of coprecipitation and impregna- tio...A novel NiB deposited layered double hydroxide (LDH) coated ferroferric oxide (Fe304@LDH@NiB) magnet- ic core-shell nanocomposite was successfully fabricated by the combination of coprecipitation and impregna- tion-reduction. During the Fe304@LDH preparation, a facile template-free approach was employed to introduce the LDH shell, which was more efficient than the conventional method for the preparation of mesoporous materials that always needs to introduce and remove templates. The resulted Fe304@LDH has a relatively high surface area and abundant surface hydroxyl group, which can adsorb metal ions, making it favorable to disperse and stabilize the ac- tive Ni species, as demonstraed by TEM, XPS, FT-IR and BET characterizations. Therefore, it exhibited good activ- ity in the selective hydrogenation of cinnamic acid to hydrocinnamic acid with the conversion and selectivity both approaching to 100%. Notably, the obtained Fe304@LDH@NiB can be easily separated by an external magnetic field and recycled eleven times without appreciable loss of its initial catalytic activity.展开更多
Challenges associated with low-drug-loading capacity,lack of active targeting of tumor cells and unspecific drug release of nanocarriers synchronously plague the success of cancer therapy.Herein,we constructed active-...Challenges associated with low-drug-loading capacity,lack of active targeting of tumor cells and unspecific drug release of nanocarriers synchronously plague the success of cancer therapy.Herein,we constructed active-targeting,redox-activated polymeric micelles(HPGssML)selfassembled aptamer-decorated,amphiphilic biodegradable poly(benzyl malolactonate-co-e-caprolactone)copolymer with disulfide linkage and p-conjugated moieties.HPGssML with a homogenous spherical shape and nanosized diameter(-150 nm)formed a low critical micellar concentration(10^-3mg/mL),suggesting good stability of polymeric micelles.The anticancer drug,doxorubicin(DOX),can be efficiently loaded into the core of micelles with high-drug-loading content via strong π-π interaction,which was verified by a decrease in fluorescence intensity and redshift in UV adsorption of DOX in micelles.The redox sensitivity of polymeric micelles was confirmed by size change and in vitro drug release in a reducing environment.Confocal microscopy and flow cytometry assay demonstrated that conjugating aptamers could enhance specific uptake of HPGssML by cancer cells.An in vitro cytotoxicity study showed that the half-maximal inhibitory concentration(IC50)of DOX-loaded HPGssML was two times lower than that of the control group,demonstrating improved antitumor efficacy.Therefore,the multifunctional biodegradable polymeric micelles can be exploited as a desirable drug carrier for effective cancer treatment.展开更多
The development of efficient method to prepare poly(silyl ether)s(PSEs)is highly desirable.Herein,an environmentally sustainable copper-catalyzed dehydrocoupling polymerization was developed with good yields and high ...The development of efficient method to prepare poly(silyl ether)s(PSEs)is highly desirable.Herein,an environmentally sustainable copper-catalyzed dehydrocoupling polymerization was developed with good yields and high molecular weight(up to 48,400 of Mn and up to 97%yield).Monomers of different types(AB type or AA and BB type)are suitable to afford PSEs.The PSEs show good thermal stability and low glass-transition temperature.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11774438the Natural Science Foundation of Jiangsu Province under Grant No BK20151172+2 种基金the Qing Lan Project,the Opening Project of State Key Laboratory of Silicon Materials under Grant No SKL2017-04the Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology of Chinese Academy of Sciencesthe Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant No SJCX18_1024
文摘The Sb6 Te4/VO2 multilayer thin films are prepared by magnetron sputtering and the potential application in phase change memory is investigated in detail. Compared with Sb6 Te4, Sb6 Te4/VO2 multilayer composite thin films have higher phase change temperature and crystallization resistance, indicating better thermal stability and less power consumption. Also, Sb6 Te4/VO2 has a broader energy band of 1.58 eV and better data retention (125℃ for 103/). The crystallization is suppressed by the multilayer interfaces in Sbf Te4/VO2 thin film with a smaller rms surface roughness for Sbf Te4/VO2 than monolayer Sb4Te6. The picosecond laser technology is applied to study the phase change speed. A short crystallization time of 5.21 ns is realized for the Sb6Te4 (2nm)/VO2 (8nm) thin film. The Sb6 Te4/VO2 multilayer thin film is a potential and competitive phase change material for its good thermal stability and fast phase change speed.
文摘Aqueous Zn ion batteries(ZIBs)are promising in energy storage due to the low cost,high safety,and material abundance.The development of metal oxides as the cathode for ZIBs is limited by the strong electrostatic forces between O2−and Zn2+which leads to poor cyclic stability.Herein,Bi2S3 is proposed as a promising cathode material for rechargeable aqueous ZIBs.Improved cyclic stability and fast diffusion of Zn2+is observed.Also,the layered structure of Bi2S3 with the weak van der Waals interaction between layers offers paths for diffusion and occupancy of Zn2+.As a result,the Zn/Bi2S3 battery delivers high capacity of 161 mAh g−1 at 0.2 A g−1 and good cycling stability up to 100 cycles with ca.100%retention.The battery also demonstrates good cyclic performance of ca.80.3%over 2000 cycles at 1 A g−1.The storage mechanism in the Bi2S3 cathode is related to the reversible Zn ion intercalation/extraction reactions and the capacitive contribution.This work indicates that Bi2S3 shows great potential as the cathode of ZIBs with good performance and stability.
基金supported by the National Key Researchand Development Programof China(No.2022YFB4600101)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 0470303)+2 种基金the National Natural Science Foundation of China(No.21974057)the Western Light Project of Chinese Academy of Sciences(No.xbzg-zdsy-202007)the Oasis Scholar of Shihezi University and the Central Government to Guide Local Technological Development(No.23ZYQA315).
文摘Inkjet 3D printing has potential in the additive manufacturing of electronic circuits and devices.However,inks that can be used for printing layers with T5%>300℃ or hardness>200 MPa have been rarely reported.Cyanate ester(CE)polymers have excellent thermal stability,high strength,and low shrinkage compared to other common dielectric inks for inkjet 3D printing,but cannot be quickly shaped by ultraviolet(UV)irradiation or thermal treatment.Combining CEs with UV-curable monomers may be a possible way to accelerate crosslinking,but there are challenges from the adverse effects of the dilution of both monomers.In this study,dielectric inks with acrylate and cyanate moieties were developed.The low viscosity and surface tension of the CE precursor(Bisphenol E cyanate ester)were combined with photocurable acrylate diluent monomers and cross-linker to realize an ink suitable for inkjet 3D printing.An internal dual three-dimensional cross-linked network structure resin was prepared by a combination of photocuring and thermal curing with T5%up to 326.69℃,hardness up to 431.84 MPa,dielectric constant of 2.70 at 8 GHz,and shrinkage of 1.64%.The developed dielectric inks can be applied to the 3D printing of printed circuit boards and other electronic devices that require dielectric properties.
基金supported by the International Science&Technology Cooperation of China(No.2019YFE0100200)the National Natural Science Foundation of China(No.53130202)the Basic Research Program of Shanxi Province,China(No.20210302123259)。
文摘The development of high-performance and low-cost cathode materials is of great significance for the progress in lithium-ion batteries.The use of Co and even Ni is not conducive to the sustainable and healthy development of the power battery industry owing to their high cost and limited resources.Here,we report LiMn_(2)O_(4)integrated with coating and doping by Sn self-segregation.Auger electron energy spectrum and soft X-ray absorption spectrum show that the coating is Sn-rich LiMn_(2)O_(4),with a small Sn doping in the bulk phase.The integration strategy can not only mitigate the Jahn–Teller distortion but also effectively avoid the dissolution of manganese.The as-obtained product demonstrates superior high initial capacities of 124 mAh·g^(-1)and 120 mAh·g^(-1)with the capacity retention of 91.1%and 90.2%at 25℃and55℃after 50 cycles,respectively.This novel material-processing method highlights a new development direction for the progress of cathode materials for lithium-ion batteries.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51931006 and 51871188)the National Key R&D Program of China(No.2016YFA0202602)+4 种基金the Science and Technology Plan-ning Projects of Fujian Province of China(Grant No.2020H0005)the Natural Science Foundation of Fujian Province of China(No.2020J05014)Guangdong Basic and Applied Basic Research Foundation(Nos.2021A1515010139 and 2019A1515011070)the Fundamental Research Funds for the Central Universities of China(Xiamen University:Nos.20720200068,20720190013,and 20720200080)the“Double-First Class”Foundation of Mate-rials Intelligent Manufacturing Discipline of Xiamen University。
文摘There are plenty of issues need to be solved before the practi-cal application of Li-and Mn-rich cathodes,including the detrimental voltage decay and mediocre rate capability,etc.Element doping can e ectively solve the above problems,but cause the loss of capacity.The introduction of appropriate defects can compensate the capacity loss;however,it will lead to structural mismatch and stress accumulation.Herein,a three-in-one method that combines cation–polyanion co-doping,defect construction,and stress engineering is pro-posed.The co-doped Na^(+)/SO_(4)^(2-)can stabilize the layer framework and enhance the capacity and voltage stability.The induced defects would activate more reac-tion sites and promote the electrochemical performance.Meanwhile,the unique alternately distributed defect bands and crystal bands structure can alleviate the stress accumulation caused by changes of cell parameters upon cycling.Consequently,the modified sample retains a capacity of 273 mAh g^(-1)with a high-capacity retention of 94.1%after 100 cycles at 0.2 C,and 152 mAh g^(-1)after 1000 cycles at 2 C,the corresponding voltage attenuation is less than 0.907 mV per cycle.
基金This work was supported by the National Basic Research Program of China (Nos. 2011CB932401, 2011CBA00500, and 2012CB224802), and the National Natural Science Foundation of China (Nos. 21221062, 21171105, 21322107 and 21131004).
文摘Porous Pt-Fe bimetallic nanocrystals have been synthesized via self-assembly and can effectively facilitate the synthesis of 2-propanol from acetone. The bimetallic catalyst has three--dimensional channels and shows turnover frequencies (TOFs) of up to 972 h^-1 for a continuous process more than 50 h. Preliminary mechanistic studies suggest that the high reactivity is related to the interface consisting of a bimetallic Pt-Fe alloy and Fe2O3-x. An understanding of real catalytic behavior and the catalytic mechanism based on model systems has been shown to help fabricate an improved Pt/Fe3O4 catalyst with increased activity and lifetime which has great potential for large-scale industrial applications.
文摘In this paper, ultrathin Pt nanowires (Pt NWs) and PtNi alloy nanowires (PtNi NWs) supported on carbon were synthesized as electrocatalysts for oxygen reduction reaction (ORR). Pt and PtNi NWs catalysts composed of interconnected nanoparticles were prepared by using a soft template method with CTAB as the surface active agent. The physical characterization and electrocatalytic perfor- mance of Pt NWs and PtNi NWs catalysts for ORR were investigated and the results were compared with the commercial Pt/C catalyst. The atomic ratio of Pt and Ni in PtNi alloy was approximately 3 to 1. The results show that after alloying with Ni, the binding energy of Pt shifts to higher values, indicating the change of its electronic structure, and that Pt3Ni NWs catalyst has a significantly higher electrocatalytic activity and good stability for ORR as compared to Pt NWs and even Pt/C catalyst. The enhanced electrocatalytic activity of Pt3Ni NWs catalyst is mainly resulted from the downshifted-band center of Pt caused by the interaction between Pt and Ni in the alloy, which facilitates the desorption of oxygen containing species (Oads or OHads) and the release of active sites.
基金This work was supported by the National Natural Science Foundation of China (Nos. 21376060 and 21676068) and the Natural Science Foundation of Hebei Province (No. B2014201024).
文摘A novel NiB deposited layered double hydroxide (LDH) coated ferroferric oxide (Fe304@LDH@NiB) magnet- ic core-shell nanocomposite was successfully fabricated by the combination of coprecipitation and impregna- tion-reduction. During the Fe304@LDH preparation, a facile template-free approach was employed to introduce the LDH shell, which was more efficient than the conventional method for the preparation of mesoporous materials that always needs to introduce and remove templates. The resulted Fe304@LDH has a relatively high surface area and abundant surface hydroxyl group, which can adsorb metal ions, making it favorable to disperse and stabilize the ac- tive Ni species, as demonstraed by TEM, XPS, FT-IR and BET characterizations. Therefore, it exhibited good activ- ity in the selective hydrogenation of cinnamic acid to hydrocinnamic acid with the conversion and selectivity both approaching to 100%. Notably, the obtained Fe304@LDH@NiB can be easily separated by an external magnetic field and recycled eleven times without appreciable loss of its initial catalytic activity.
基金supported by the Natural Science Foundation of China(Grant No.51973135)National Key Research and Development Program of China(Grant Nos.2018YFC1106103,2017YFB0702600,2017YFB0702603)Science and Technology Foundation of Sichuan Province(Grant No.2018RZ0044).
文摘Challenges associated with low-drug-loading capacity,lack of active targeting of tumor cells and unspecific drug release of nanocarriers synchronously plague the success of cancer therapy.Herein,we constructed active-targeting,redox-activated polymeric micelles(HPGssML)selfassembled aptamer-decorated,amphiphilic biodegradable poly(benzyl malolactonate-co-e-caprolactone)copolymer with disulfide linkage and p-conjugated moieties.HPGssML with a homogenous spherical shape and nanosized diameter(-150 nm)formed a low critical micellar concentration(10^-3mg/mL),suggesting good stability of polymeric micelles.The anticancer drug,doxorubicin(DOX),can be efficiently loaded into the core of micelles with high-drug-loading content via strong π-π interaction,which was verified by a decrease in fluorescence intensity and redshift in UV adsorption of DOX in micelles.The redox sensitivity of polymeric micelles was confirmed by size change and in vitro drug release in a reducing environment.Confocal microscopy and flow cytometry assay demonstrated that conjugating aptamers could enhance specific uptake of HPGssML by cancer cells.An in vitro cytotoxicity study showed that the half-maximal inhibitory concentration(IC50)of DOX-loaded HPGssML was two times lower than that of the control group,demonstrating improved antitumor efficacy.Therefore,the multifunctional biodegradable polymeric micelles can be exploited as a desirable drug carrier for effective cancer treatment.
基金support from National Natural Science Foundation of China(No.21690074)Chinese Academy of Sciences(Nos.XDB17020300,DICP I202015)is acknowledged.
文摘The development of efficient method to prepare poly(silyl ether)s(PSEs)is highly desirable.Herein,an environmentally sustainable copper-catalyzed dehydrocoupling polymerization was developed with good yields and high molecular weight(up to 48,400 of Mn and up to 97%yield).Monomers of different types(AB type or AA and BB type)are suitable to afford PSEs.The PSEs show good thermal stability and low glass-transition temperature.