A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced ...A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced by one and the computational mesh to be generated is needed only on the boundary of the domain.展开更多
Subject Code:E01 Conventional polycrystalline materials become harder with decreasing grain size,following the classical Hall—Petch relationship,i.e.,strength increases reversely proportional to the square root of th...Subject Code:E01 Conventional polycrystalline materials become harder with decreasing grain size,following the classical Hall—Petch relationship,i.e.,strength increases reversely proportional to the square root of the grain size.Strengthening occurs due to dislocation pileups at grain boundaries that prevent the dislocations展开更多
文摘A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced by one and the computational mesh to be generated is needed only on the boundary of the domain.
文摘Subject Code:E01 Conventional polycrystalline materials become harder with decreasing grain size,following the classical Hall—Petch relationship,i.e.,strength increases reversely proportional to the square root of the grain size.Strengthening occurs due to dislocation pileups at grain boundaries that prevent the dislocations