Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall station...Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall stations are sparse and unevenly distributed, and the transboundary characteristic makes the collection of precipitation data more difficult, which has restricted hydrological processes simulation. In this study, daily precipitation data from four datasets(gauge observations, inverse distance weighted(IDW) data, Tropical Rainfall Measuring Mission(TRMM) estimates, and Climate Hazards Group InfraRed Precipitation with Stations(CHIRPS) estimates), were applied to drive the Soil and Water Assessment Tool(SWAT) model, and then their capability for hydrological simulation in the Lower Lancang-Mekong River Basin were examined. TRMM and CHIRPS data showed good performances on precipitation estimation in the Lower Lancang-Mekong River Basin, with the better performance for TRMM product. The Nash-Sutcliffe efficiency(NSE) values of gauge, IDW, TRMM, and CHIRPS simulations during the calibration period were 0.87, 0.86, 0.95, and 0.93 for monthly flow, respectively, and those for daily flow were 0.75, 0.77, 0.86, and 0.84, respectively. TRMM and CHIRPS data were superior to rain gauge and IDW data for driving the hydrological model, and TRMM data produced the best simulation performance. Satellite-based precipitation estimates could be suitable data sources when simulating hydrological processes for large data-poor or ungauged watersheds, especially in international river basins for which precipitation observations are difficult to collect. CHIRPS data provide long precipitation time series from 1981 to near present and thus could be used as an alternative precipitation input for hydrological simulation, especially for the period without TRMM data. For satellite-based precipitation products, the differences in the occurrence frequencies and amounts of precipitation with different intensities would affect simulation results of water balance components, which should be comprehensively considered in water resources estimation and planning.展开更多
The Lower Mekong River basin (LMB) covers the lower part of the Mekong river basin, including Laos, Thailand, Cambodia and Vietnam. Due to numerous pressures from high population growth and intensive hydropower develo...The Lower Mekong River basin (LMB) covers the lower part of the Mekong river basin, including Laos, Thailand, Cambodia and Vietnam. Due to numerous pressures from high population growth and intensive hydropower development, the LMB has been facing significant challenges concerning its biodiversity and ecosystem. In 2017, Mekong River Commission (MRC), an intergovernmental organisation founded in 1995 among LMB countries, established the Council Study, which analysed the impacts of water development scenarios concerning the environmental, socioeconomic aspects of the LMB. This paper explores the nature of risks to the LMB water development and subsequently evaluates LMB’s water development scenarios described in the Council Study by using a multi-criteria decision analysis (MCDA) method. MCDA method has been widely applied in the field of water resource management in order to assist the decision-making process by systematically evaluating a certain number of alternatives against well-selected criteria through a preference rating scheme. By implementing a risk-based comprehensive assessment of the LMB transboundary water, this study provides insights into the impacts of the increasing risks to the ecosystem and human beings on the water development of the basin over time, which assists to change the awareness and the perspective toward humans’ risks and transboundary river ecosystem of decision-makers. This paper provides valuable recommendations for MRC to improve their policy concerning benefit-sharing scheme, water planning and risk mitigation strategies.展开更多
Mekong River is one of the major international freshwater sources in the world. The Lower Mekong Basin (LMB) comprised of four downstream countries, including Thailand, Lao PDR, Cambodia, and Vietnam. The utilization ...Mekong River is one of the major international freshwater sources in the world. The Lower Mekong Basin (LMB) comprised of four downstream countries, including Thailand, Lao PDR, Cambodia, and Vietnam. The utilization of the basin’s water brings not only substantial benefits to the region ranging from hydropower to navigation, but also negative impacts caused by the unbalanced water using. The essential role of Mekong River requires all member nations to cooperate effectively for the sustainable development of the region. One of the most popular methods in the field of water resource management is a trustable tool called the Analytical Hierarchy Process (AHP). AHP is much appropriate for water resource policymaking. The literature, however, points out that there is no study to both structure the water using hierarchy and employ quantitative (objective) criteria to the AHP model in LMB case. With regard to water resource management, there are no previous studies applying AHP models to evaluating sustainable development of transboundary water resource in LMB case. This paper explores the evolution of water cooperation among Mekong countries and subsequently evaluates the water development scenarios in the LMB based on the water cooperation preferences of four LMB countries This study proposes a novel approach to analyzing, assessing water resource development scenarios characterized by sustainability indicators and to assisting in developing a suitable water policy in LMB according to the best cooperation scenario.展开更多
Concern on alteration of sediment natural flow caused by developments of water resources system, has been addressed in many river basins around the world especially in developing and remote regions where sediment data...Concern on alteration of sediment natural flow caused by developments of water resources system, has been addressed in many river basins around the world especially in developing and remote regions where sediment data are poorly gauged or ungauged. Since suspended sediment load (SSL) is predominant, the objectives of this research are to: 1) simulate monthly average SSL (SSLm) of four catchments using artificial neural network (ANN);2) assess the application of the calibrated ANN (Cal-ANN) models in three ungauged catchment representatives (UCR) before using them to predict SSLm of three actual ungauged catchments (AUC) in the Tonle Sap River Basin;and 3) estimate annual SSL (SSLA) of each AUC for the case of with and without dam-reservoirs. The model performance for total load (SSLT) prediction was also investigated because it is important for dam-reservoir management. For model simulation, ANN yielded very satisfactory results with determination coefficient (R2) ranging from 0.81 to 0.94 in calibration stage and 0.63 to 0.87 in validation stage. The Cal-ANN models also performed well in UCRs with R2 ranging from 0.59 to 0.64. From the result of this study, one can estimate SSLm and SSLT of ungauged catchments with an accuracy of 0.61 in term of R2 and 34.06% in term of absolute percentage bias, respectively. SSLA of the AUCs was found between 159,281 and 723,580 t/year. In combination with Brune’s method, the impact of dam-reservoirs could reduce SSLA between 47% and 68%. This result is key information for sustainable development of such infrastructures.展开更多
Irrigation infrastructure expansion threatens the diversity of freshwater fish worldwide.Irrigation infrastructure creates migration barriers which can block access to important nursery,feeding and spawning habitat.La...Irrigation infrastructure expansion threatens the diversity of freshwater fish worldwide.Irrigation infrastructure creates migration barriers which can block access to important nursery,feeding and spawning habitat.Lao PDR is a landlocked country situated within the Lower Mekong River Basin where there is a substantial dependency on rice and fish for food,income and livelihoods.The country is experiencing an unprecedented boom in irrigation infrastructure investment,with modernisation programs being implemented in every province.Despite significant investment in infrastructure upgrades,and the potential impact on freshwater fish,little consideration has been given to fish passage solutions.In 2008,we commenced a fish passage program in Lao PDR.The intent of this case study is to outline the pivotal elements of the program of knowledge development and transfer,in the context of river connectivity and fisheries management in Lao PDR.We also highlight challenges in international research in development and lessons learned.展开更多
基金National Key R&D Program of China(No.2016YFA0601601)National Natural Science Foundation of China(No.41601026,41661099)Science and Technology Planning Project of Yunnan Province,China(No.2017FB073)
文摘Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall stations are sparse and unevenly distributed, and the transboundary characteristic makes the collection of precipitation data more difficult, which has restricted hydrological processes simulation. In this study, daily precipitation data from four datasets(gauge observations, inverse distance weighted(IDW) data, Tropical Rainfall Measuring Mission(TRMM) estimates, and Climate Hazards Group InfraRed Precipitation with Stations(CHIRPS) estimates), were applied to drive the Soil and Water Assessment Tool(SWAT) model, and then their capability for hydrological simulation in the Lower Lancang-Mekong River Basin were examined. TRMM and CHIRPS data showed good performances on precipitation estimation in the Lower Lancang-Mekong River Basin, with the better performance for TRMM product. The Nash-Sutcliffe efficiency(NSE) values of gauge, IDW, TRMM, and CHIRPS simulations during the calibration period were 0.87, 0.86, 0.95, and 0.93 for monthly flow, respectively, and those for daily flow were 0.75, 0.77, 0.86, and 0.84, respectively. TRMM and CHIRPS data were superior to rain gauge and IDW data for driving the hydrological model, and TRMM data produced the best simulation performance. Satellite-based precipitation estimates could be suitable data sources when simulating hydrological processes for large data-poor or ungauged watersheds, especially in international river basins for which precipitation observations are difficult to collect. CHIRPS data provide long precipitation time series from 1981 to near present and thus could be used as an alternative precipitation input for hydrological simulation, especially for the period without TRMM data. For satellite-based precipitation products, the differences in the occurrence frequencies and amounts of precipitation with different intensities would affect simulation results of water balance components, which should be comprehensively considered in water resources estimation and planning.
文摘The Lower Mekong River basin (LMB) covers the lower part of the Mekong river basin, including Laos, Thailand, Cambodia and Vietnam. Due to numerous pressures from high population growth and intensive hydropower development, the LMB has been facing significant challenges concerning its biodiversity and ecosystem. In 2017, Mekong River Commission (MRC), an intergovernmental organisation founded in 1995 among LMB countries, established the Council Study, which analysed the impacts of water development scenarios concerning the environmental, socioeconomic aspects of the LMB. This paper explores the nature of risks to the LMB water development and subsequently evaluates LMB’s water development scenarios described in the Council Study by using a multi-criteria decision analysis (MCDA) method. MCDA method has been widely applied in the field of water resource management in order to assist the decision-making process by systematically evaluating a certain number of alternatives against well-selected criteria through a preference rating scheme. By implementing a risk-based comprehensive assessment of the LMB transboundary water, this study provides insights into the impacts of the increasing risks to the ecosystem and human beings on the water development of the basin over time, which assists to change the awareness and the perspective toward humans’ risks and transboundary river ecosystem of decision-makers. This paper provides valuable recommendations for MRC to improve their policy concerning benefit-sharing scheme, water planning and risk mitigation strategies.
文摘Mekong River is one of the major international freshwater sources in the world. The Lower Mekong Basin (LMB) comprised of four downstream countries, including Thailand, Lao PDR, Cambodia, and Vietnam. The utilization of the basin’s water brings not only substantial benefits to the region ranging from hydropower to navigation, but also negative impacts caused by the unbalanced water using. The essential role of Mekong River requires all member nations to cooperate effectively for the sustainable development of the region. One of the most popular methods in the field of water resource management is a trustable tool called the Analytical Hierarchy Process (AHP). AHP is much appropriate for water resource policymaking. The literature, however, points out that there is no study to both structure the water using hierarchy and employ quantitative (objective) criteria to the AHP model in LMB case. With regard to water resource management, there are no previous studies applying AHP models to evaluating sustainable development of transboundary water resource in LMB case. This paper explores the evolution of water cooperation among Mekong countries and subsequently evaluates the water development scenarios in the LMB based on the water cooperation preferences of four LMB countries This study proposes a novel approach to analyzing, assessing water resource development scenarios characterized by sustainability indicators and to assisting in developing a suitable water policy in LMB according to the best cooperation scenario.
文摘Concern on alteration of sediment natural flow caused by developments of water resources system, has been addressed in many river basins around the world especially in developing and remote regions where sediment data are poorly gauged or ungauged. Since suspended sediment load (SSL) is predominant, the objectives of this research are to: 1) simulate monthly average SSL (SSLm) of four catchments using artificial neural network (ANN);2) assess the application of the calibrated ANN (Cal-ANN) models in three ungauged catchment representatives (UCR) before using them to predict SSLm of three actual ungauged catchments (AUC) in the Tonle Sap River Basin;and 3) estimate annual SSL (SSLA) of each AUC for the case of with and without dam-reservoirs. The model performance for total load (SSLT) prediction was also investigated because it is important for dam-reservoir management. For model simulation, ANN yielded very satisfactory results with determination coefficient (R2) ranging from 0.81 to 0.94 in calibration stage and 0.63 to 0.87 in validation stage. The Cal-ANN models also performed well in UCRs with R2 ranging from 0.59 to 0.64. From the result of this study, one can estimate SSLm and SSLT of ungauged catchments with an accuracy of 0.61 in term of R2 and 34.06% in term of absolute percentage bias, respectively. SSLA of the AUCs was found between 159,281 and 723,580 t/year. In combination with Brune’s method, the impact of dam-reservoirs could reduce SSLA between 47% and 68%. This result is key information for sustainable development of such infrastructures.
基金The program was funded by the Australian Centre for International Agricultural Research.
文摘Irrigation infrastructure expansion threatens the diversity of freshwater fish worldwide.Irrigation infrastructure creates migration barriers which can block access to important nursery,feeding and spawning habitat.Lao PDR is a landlocked country situated within the Lower Mekong River Basin where there is a substantial dependency on rice and fish for food,income and livelihoods.The country is experiencing an unprecedented boom in irrigation infrastructure investment,with modernisation programs being implemented in every province.Despite significant investment in infrastructure upgrades,and the potential impact on freshwater fish,little consideration has been given to fish passage solutions.In 2008,we commenced a fish passage program in Lao PDR.The intent of this case study is to outline the pivotal elements of the program of knowledge development and transfer,in the context of river connectivity and fisheries management in Lao PDR.We also highlight challenges in international research in development and lessons learned.