BACKGROUND Circular RNAs(circRNAs)are involved in the pathogenesis of many diseases through competing endogenous RNA(ceRNA)regulatory mechanisms.AIM To investigate a circRNA-related ceRNA regulatory network and a new ...BACKGROUND Circular RNAs(circRNAs)are involved in the pathogenesis of many diseases through competing endogenous RNA(ceRNA)regulatory mechanisms.AIM To investigate a circRNA-related ceRNA regulatory network and a new predictive model by circRNA to understand the diagnostic mechanism of circRNAs in ulcerative colitis(UC).METHODS We obtained gene expression profiles of circRNAs,miRNAs,and mRNAs in UC from the Gene Expression Omnibus dataset.The circRNA-miRNA-mRNA network was constructed based on circRNA-miRNA and miRNA-mRNA interactions.Functional enrichment analysis was performed to identify the biological mechanisms involved in circRNAs.We identified the most relevant differential circRNAs for diagnosing UC and constructed a new predictive nomogram,whose efficacy was tested with the C-index,receiver operating characteristic curve(ROC),and decision curve analysis(DCA).RESULTS A circRNA-miRNA-mRNA regulatory network was obtained,containing 12 circRNAs,three miRNAs,and 38 mRNAs.Two optimal prognostic-related differentially expressed circRNAs,hsa_circ_0085323 and hsa_circ_0036906,were included to construct a predictive nomogram.The model showed good discrimination,with a C-index of 1(>0.9,high accuracy).ROC and DCA suggested that the nomogram had a beneficial diagnostic ability.CONCLUSION This novel predictive nomogram incorporating hsa_circ_0085323 and hsa_circ_0036906 can be conveniently used to predict the risk of UC.The circRNa-miRNA-mRNA network in UC could be more clinically significant.展开更多
As a novel economic form,the digital economy is reshaping the financial regulatory landscape and significantly impacting regulatory costs.This paper incorporates the digital economy and financial regulatory costs into...As a novel economic form,the digital economy is reshaping the financial regulatory landscape and significantly impacting regulatory costs.This paper incorporates the digital economy and financial regulatory costs into the classic Solow growth model,uncovering an inverted U-shaped relationship between them.A subsequent mechanism analysis explains the rationale behind this relationship.To empirically examine this relationship in China,the paper utilizes inter-provincial panel data from 2013 to 2021 and employs methodologies such as the two-way fixed effects and moderating effects models.These analyses have important implications for the sound and sustainable development of China’s financial industry.The findings indicate:(a)As China’s digital economy develops,its impact on financial regulatory costs follows an inverted U-shaped pattern,initially increasing and then declining.This conclusion remains valid after robustness tests.(b)The influence of the digital economy on regulatory costs depends on favorable external conditions.Specifically,the impact is more pronounced in regions and periods with better digital infrastructure and more abundant human capital.(c)Additionally,redundant resources moderate this impact,which can weaken the inverted U-shaped relationship.Our findings not only provide a theoretical foundation for understanding the impact of the digital economy on financial regulatory costs but also offer valuable policy insights for optimizing financial regulation in China.展开更多
Biology provides many examples of complex systems whose properties allow organisms to develop in a highly reproducible,or robust,manner.One such system is the growth and development of flat leaves in Arabidopsis thali...Biology provides many examples of complex systems whose properties allow organisms to develop in a highly reproducible,or robust,manner.One such system is the growth and development of flat leaves in Arabidopsis thaliana.This mechanistically challenging process results from multiple inputs including gene interactions,cellular geometry,growth rates,and coordinated cell divisions.To better understand how this complex genetic and cellular information controls leaf growth,we developed a mathematical model of flat leaf production.This two-dimensional model describes the gene interactions in a vertex network of cells which grow and divide according to physical forces and genetic information.Interestingly,the model predicts the presence of an unknown additional factor required for the formation of biologically realistic gene expression domains and iterative cell division.This two-dimensional model will form the basis for future studies into robustness of adaxial-abaxial patterning.展开更多
This paper investigates the stability of the equilibria of the piecewise-linear models of genetic regulatory networks on the intersection of the thresholds of all variables. It first studies circling trajectories and ...This paper investigates the stability of the equilibria of the piecewise-linear models of genetic regulatory networks on the intersection of the thresholds of all variables. It first studies circling trajectories and derives some stability conditions by quantitative analysis in the state transition graph. Then it proposes a common Lyapunov function for convergence analysis of the piecewise-linear models and gives a simple sign condition. All the obtained conditions are only related to the constant terms on the right-hand side of the differential equation after bringing the equilibrium to zero.展开更多
The research hotspot in post-genomic era is from sequence to function. Building genetic regulatory network (GRN) can help to understand the regulatory mechanism between genes and the function of organisms. Probabilist...The research hotspot in post-genomic era is from sequence to function. Building genetic regulatory network (GRN) can help to understand the regulatory mechanism between genes and the function of organisms. Probabilistic GRN has been paid more attention recently. This paper discusses the Hidden Markov Model (HMM) approach served as a tool to build GRN. Different genes with similar expression levels are considered as different states during training HMM. The probable regulatory genes of target genes can be found out through the resulting states transition matrix and the determinate regulatory functions can be predicted using nonlinear regression algorithm. The experiments on artificial and real-life datasets show the effectiveness of HMM in building GRN.展开更多
Under different conditions,gene regulatory networks(GRNs)of the same gene set could be similar but different.The differential analysis of GRNs under different conditions is important for understanding condition-specif...Under different conditions,gene regulatory networks(GRNs)of the same gene set could be similar but different.The differential analysis of GRNs under different conditions is important for understanding condition-specific gene regulatory relationships.In a naive approach,existing GRN inference algorithms can be used to separately estimate two GRNs under different conditions and identify the differences between them.However,in this way,the similarities between the pairwise GRNs are not taken into account.Several joint differential analysis algorithms have been proposed recently,which were proved to outperform the naive approach apparently.In this paper,we model the GRNs under different conditions with structural equation models(SEMs)to integrate gene expression data and genetic perturbations,and re-parameterize the pairwise SEMs to form an integrated model that incorporates the differential structure.Then,a Bayesian inference method is used to make joint differential analysis by solving the integrated model.We evaluated the performance of the proposed re-parametrization-based Bayesian differential analysis(ReBDA)algorithm by running simulations on synthetic data with different settings.The performance of the ReBDA algorithm was demonstrated better than another state-of-the-art joint differential analysis algorithm for SEMs ReDNet obviously.In the end,the ReBDA algorithm was applied to make differential analysis on a real human lung gene data set to illustrate its applicability and practicability.展开更多
The communications development requires interaction between converging heterogeneous technology environment, with quality and continuity of services to remain competitive. The full implementation of the Future Interne...The communications development requires interaction between converging heterogeneous technology environment, with quality and continuity of services to remain competitive. The full implementation of the Future Internet concept implies in the necessity to operate among heterogeneous technology platforms with continuity of QoS (Quality of Service), what leads to the necessity of an innovative business model to support it and new technical mechanisms of vertical handover to ensure the QoS continuity required and expected by final users but, mainly, perceived by them. An innovative business model that requires innovative QoS continuity mechanisms must consider technical and commercial interoperation among many telecommunication services providers, nationally and internationally based. This interaction demands clear rules to be followed by every player along the telecommunication services chain,i.e., it demands a set of regulation acts to guide them and allow their viability.展开更多
基金Supported by the National Natural Science Foundation of China,No.81774093,No.81904009,No.81974546 and No.82174182Key R&D Project of Hubei Province,No.2020BCB001.
文摘BACKGROUND Circular RNAs(circRNAs)are involved in the pathogenesis of many diseases through competing endogenous RNA(ceRNA)regulatory mechanisms.AIM To investigate a circRNA-related ceRNA regulatory network and a new predictive model by circRNA to understand the diagnostic mechanism of circRNAs in ulcerative colitis(UC).METHODS We obtained gene expression profiles of circRNAs,miRNAs,and mRNAs in UC from the Gene Expression Omnibus dataset.The circRNA-miRNA-mRNA network was constructed based on circRNA-miRNA and miRNA-mRNA interactions.Functional enrichment analysis was performed to identify the biological mechanisms involved in circRNAs.We identified the most relevant differential circRNAs for diagnosing UC and constructed a new predictive nomogram,whose efficacy was tested with the C-index,receiver operating characteristic curve(ROC),and decision curve analysis(DCA).RESULTS A circRNA-miRNA-mRNA regulatory network was obtained,containing 12 circRNAs,three miRNAs,and 38 mRNAs.Two optimal prognostic-related differentially expressed circRNAs,hsa_circ_0085323 and hsa_circ_0036906,were included to construct a predictive nomogram.The model showed good discrimination,with a C-index of 1(>0.9,high accuracy).ROC and DCA suggested that the nomogram had a beneficial diagnostic ability.CONCLUSION This novel predictive nomogram incorporating hsa_circ_0085323 and hsa_circ_0036906 can be conveniently used to predict the risk of UC.The circRNa-miRNA-mRNA network in UC could be more clinically significant.
基金This study is funded by National Social Science Fund Major Project:“Research on Stimulating Innovation Vitality of Scientific and Technological Talent in the Context of Building a Talent Powerhouse”(21ZDA014)Research Start-Up Fund for Talent Recruitment of Sichuan Academy of Social Sciences:“Research on the Deep Integration of Sichuan’s Digital Economy and Real Economy to Support the Construction of a Modern Industrial System”(23RYJ03).
文摘As a novel economic form,the digital economy is reshaping the financial regulatory landscape and significantly impacting regulatory costs.This paper incorporates the digital economy and financial regulatory costs into the classic Solow growth model,uncovering an inverted U-shaped relationship between them.A subsequent mechanism analysis explains the rationale behind this relationship.To empirically examine this relationship in China,the paper utilizes inter-provincial panel data from 2013 to 2021 and employs methodologies such as the two-way fixed effects and moderating effects models.These analyses have important implications for the sound and sustainable development of China’s financial industry.The findings indicate:(a)As China’s digital economy develops,its impact on financial regulatory costs follows an inverted U-shaped pattern,initially increasing and then declining.This conclusion remains valid after robustness tests.(b)The influence of the digital economy on regulatory costs depends on favorable external conditions.Specifically,the impact is more pronounced in regions and periods with better digital infrastructure and more abundant human capital.(c)Additionally,redundant resources moderate this impact,which can weaken the inverted U-shaped relationship.Our findings not only provide a theoretical foundation for understanding the impact of the digital economy on financial regulatory costs but also offer valuable policy insights for optimizing financial regulation in China.
基金supported by the NSF#2039489 to A.Y.H and the NSF#1813071 to C.-S.C.
文摘Biology provides many examples of complex systems whose properties allow organisms to develop in a highly reproducible,or robust,manner.One such system is the growth and development of flat leaves in Arabidopsis thaliana.This mechanistically challenging process results from multiple inputs including gene interactions,cellular geometry,growth rates,and coordinated cell divisions.To better understand how this complex genetic and cellular information controls leaf growth,we developed a mathematical model of flat leaf production.This two-dimensional model describes the gene interactions in a vertex network of cells which grow and divide according to physical forces and genetic information.Interestingly,the model predicts the presence of an unknown additional factor required for the formation of biologically realistic gene expression domains and iterative cell division.This two-dimensional model will form the basis for future studies into robustness of adaxial-abaxial patterning.
基金supported by the National Natural Science Foundation of China (Grant No. 60672029)
文摘This paper investigates the stability of the equilibria of the piecewise-linear models of genetic regulatory networks on the intersection of the thresholds of all variables. It first studies circling trajectories and derives some stability conditions by quantitative analysis in the state transition graph. Then it proposes a common Lyapunov function for convergence analysis of the piecewise-linear models and gives a simple sign condition. All the obtained conditions are only related to the constant terms on the right-hand side of the differential equation after bringing the equilibrium to zero.
文摘The research hotspot in post-genomic era is from sequence to function. Building genetic regulatory network (GRN) can help to understand the regulatory mechanism between genes and the function of organisms. Probabilistic GRN has been paid more attention recently. This paper discusses the Hidden Markov Model (HMM) approach served as a tool to build GRN. Different genes with similar expression levels are considered as different states during training HMM. The probable regulatory genes of target genes can be found out through the resulting states transition matrix and the determinate regulatory functions can be predicted using nonlinear regression algorithm. The experiments on artificial and real-life datasets show the effectiveness of HMM in building GRN.
基金supported by grants from National Natural Science Foundation of China(Nos.61502198,61572226,61472161,61876069)。
文摘Under different conditions,gene regulatory networks(GRNs)of the same gene set could be similar but different.The differential analysis of GRNs under different conditions is important for understanding condition-specific gene regulatory relationships.In a naive approach,existing GRN inference algorithms can be used to separately estimate two GRNs under different conditions and identify the differences between them.However,in this way,the similarities between the pairwise GRNs are not taken into account.Several joint differential analysis algorithms have been proposed recently,which were proved to outperform the naive approach apparently.In this paper,we model the GRNs under different conditions with structural equation models(SEMs)to integrate gene expression data and genetic perturbations,and re-parameterize the pairwise SEMs to form an integrated model that incorporates the differential structure.Then,a Bayesian inference method is used to make joint differential analysis by solving the integrated model.We evaluated the performance of the proposed re-parametrization-based Bayesian differential analysis(ReBDA)algorithm by running simulations on synthetic data with different settings.The performance of the ReBDA algorithm was demonstrated better than another state-of-the-art joint differential analysis algorithm for SEMs ReDNet obviously.In the end,the ReBDA algorithm was applied to make differential analysis on a real human lung gene data set to illustrate its applicability and practicability.
文摘The communications development requires interaction between converging heterogeneous technology environment, with quality and continuity of services to remain competitive. The full implementation of the Future Internet concept implies in the necessity to operate among heterogeneous technology platforms with continuity of QoS (Quality of Service), what leads to the necessity of an innovative business model to support it and new technical mechanisms of vertical handover to ensure the QoS continuity required and expected by final users but, mainly, perceived by them. An innovative business model that requires innovative QoS continuity mechanisms must consider technical and commercial interoperation among many telecommunication services providers, nationally and internationally based. This interaction demands clear rules to be followed by every player along the telecommunication services chain,i.e., it demands a set of regulation acts to guide them and allow their viability.