The safety and risk management of cosmetic products runs through the entire life cycle of the product. The author focuses on the safety of cosmetic products, starting from the three stages of cosmetics research and de...The safety and risk management of cosmetic products runs through the entire life cycle of the product. The author focuses on the safety of cosmetic products, starting from the three stages of cosmetics research and development, production and sales, pointing out the key control points at each stage, aiming to provide a reference for cosmetics companies to develop products.展开更多
Underground coal mining is inherently hazardous,with uncontrolled ground failure regarded as one of only several critical risks for multiple fatality events.Development,implementation and management of overarching sys...Underground coal mining is inherently hazardous,with uncontrolled ground failure regarded as one of only several critical risks for multiple fatality events.Development,implementation and management of overarching systems and procedures for maintaining strata control is an important step to mitigating the impact of ground failure hazards at a mine site operational level.This paper summarised the typical pro-active ground control management system(PGCMS)implemented in various Australian underground coal mines.Australia produces approximately 100 million tonnes a year of metallurgical and thermal coal from approximately 30 of the world’s safest longwall mines operating in New South Wales and Queensland.The increased longwall productivity required to achieve both high levels of safety and profitability,places significant emphasis on the reliability of pro-active ground control management for longwall mining operations.Increased depths,adverse geological conditions,elevated variable stress regimes and weaker ground conditions,coupled with an industry wide need for increased development rates continue to make ground control management challenging.Ground control management is not only about ground support and pillar design though but also a structured process that requires a coordinated effort from all levels of the workforce to both minimise the occurrence of adverse geotechnical events and mitigate the potential risks when they do occur.The PGCMS presented in this paper is proven to provide both a safer and more productive mine environment through minimisation of unplanned delays.The critical elements of the method are presented in detail and demonstrate the utility and value of a ground control management system that has potential for implementation in underground coal mining globally.展开更多
Safety is essential when building a strong transportation system.As a key development direction in the global railway system,the intelligent railway has safety at its core,making safety a top priority while pursuing t...Safety is essential when building a strong transportation system.As a key development direction in the global railway system,the intelligent railway has safety at its core,making safety a top priority while pursuing the goals of efficiency,convenience,economy,and environmental friendliness.This paper describes the state of the art and proposes a system architecture for intelligent railway systems.It also focuses on the development of railway safety technology at home and abroad,and proposes the active safety method and technology system based on advanced theoretical methods such as the in-depth integration of cyber–physical systems(CPS),data-driven models,and intelligent computing.Finally,several typical applications are demonstrated to verify the advancement and feasibility of active safety technology in intelligent railway systems.展开更多
文摘The safety and risk management of cosmetic products runs through the entire life cycle of the product. The author focuses on the safety of cosmetic products, starting from the three stages of cosmetics research and development, production and sales, pointing out the key control points at each stage, aiming to provide a reference for cosmetics companies to develop products.
文摘Underground coal mining is inherently hazardous,with uncontrolled ground failure regarded as one of only several critical risks for multiple fatality events.Development,implementation and management of overarching systems and procedures for maintaining strata control is an important step to mitigating the impact of ground failure hazards at a mine site operational level.This paper summarised the typical pro-active ground control management system(PGCMS)implemented in various Australian underground coal mines.Australia produces approximately 100 million tonnes a year of metallurgical and thermal coal from approximately 30 of the world’s safest longwall mines operating in New South Wales and Queensland.The increased longwall productivity required to achieve both high levels of safety and profitability,places significant emphasis on the reliability of pro-active ground control management for longwall mining operations.Increased depths,adverse geological conditions,elevated variable stress regimes and weaker ground conditions,coupled with an industry wide need for increased development rates continue to make ground control management challenging.Ground control management is not only about ground support and pillar design though but also a structured process that requires a coordinated effort from all levels of the workforce to both minimise the occurrence of adverse geotechnical events and mitigate the potential risks when they do occur.The PGCMS presented in this paper is proven to provide both a safer and more productive mine environment through minimisation of unplanned delays.The critical elements of the method are presented in detail and demonstrate the utility and value of a ground control management system that has potential for implementation in underground coal mining globally.
基金supported by the 2021 Chinese Academy of Engineering(CAE)International Top-level Forum on Engineering Science and Technology,“Safety and Governance of the High-Speed Railway”。
文摘Safety is essential when building a strong transportation system.As a key development direction in the global railway system,the intelligent railway has safety at its core,making safety a top priority while pursuing the goals of efficiency,convenience,economy,and environmental friendliness.This paper describes the state of the art and proposes a system architecture for intelligent railway systems.It also focuses on the development of railway safety technology at home and abroad,and proposes the active safety method and technology system based on advanced theoretical methods such as the in-depth integration of cyber–physical systems(CPS),data-driven models,and intelligent computing.Finally,several typical applications are demonstrated to verify the advancement and feasibility of active safety technology in intelligent railway systems.