The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governi...The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governing equations of fractional order generalized thermoelasticity with three-phase lag model for functionally graded materials(FGM)(i.e., material with spatially varying material properties) are established. The analytical solution in the transform domain is obtained by using the eigenvalue approach.The inversion of Laplace transform is done numerically. The graphical results indicate that the fractional parameter has significant effects on all the physical quantities. Thus, we can consider the theory of fractional order generalized thermoelasticity an improvement on studying elastic materials.展开更多
This paper is concerned with the determination of thermoelastic displacement, stress and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity, in the context of ...This paper is concerned with the determination of thermoelastic displacement, stress and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). The surface of cavity is stress-free and is subjected to a time-dependent thermal shock. The basic equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by an eigenvalue approach. Numerical inversion of the transforms is carried out using the Bellman method. Displacement, stress and temperature are computed and presented graphically. It is found that variation in the thermo-physical properties of a material strongly influences the response to loading. A comparative study with a corresponding homogeneous material is also made.展开更多
Under an external uniform electric field, the dielectric response of graded cylindrical composites having generalized dielectric profile inclusions is investigated. The generalized dielectric profile of graded cylindr...Under an external uniform electric field, the dielectric response of graded cylindrical composites having generalized dielectric profile inclusions is investigated. The generalized dielectric profile of graded cylindrical inclusion is expressed in the form, εi(r) = c(b + r)^keβr where r is the radial variable of the cylindrical inclusions and c, b, k and β are parameters. The local potential solution of generalized dielectric profile graded composites is derived by means of the power series method and the effective dielectric response is predicted in the dilute limit. Moreover, from the result of generalized profile, the analytical solutions of local potentials and the effective responses of graded composites having three cases of dielectric profiles, i.e., the exponential profile εi(r) = ce^βr, the general power law profile εi(r) = c(b + r)^k and the profile εi(r) = cr^keβr, are sorted out, respectively. In the dilute limit, our exact results are used to test the validity of differential effective dipole approximation (DEDA) for estimating the effective response of graded cylindrical composites, and it is shown that the DEDA is in excellent agreement with the exact result.展开更多
The fractional calculus approach in the constitutive relationship model of a generalized second grade fluid is introduced.Exact analytical solutions are obtained for a class of unsteady flows for the generalized secon...The fractional calculus approach in the constitutive relationship model of a generalized second grade fluid is introduced.Exact analytical solutions are obtained for a class of unsteady flows for the generalized second grade fluid with the fractional derivative model between two parallel plates by using the Laplace transform and Fourier transform for fractional calculus.The unsteady flows are generated by the impulsive motion or periodic oscillation of one of the plates.In addition,the solutions of the shear stresses at the plates are also determined.展开更多
Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers ar...Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams.展开更多
The velocity field and the associated shear stress corresponding to the longitudinal oscillatory flow of a generalized second grade fluid, between two infinite coaxial circular cylinders, are determined by means of th...The velocity field and the associated shear stress corresponding to the longitudinal oscillatory flow of a generalized second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. Initially, the fluid and cylinders are at rest and at t = 0+ both cylinders suddenly begin to oscillate along their common axis with simple harmonic motions having angular frequencies Ω1 and Ω2. The solutions that have been obtained are presented under integral and series forms in terms of the generalized G and R functions and satisfy the governing differential equation and all imposed initial and boundary conditions. The respective solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for the similar flow of ordinary second grade fluid and Newtonian fluid are also obtained as limiting cases of our general solutions. At the end, the effect of different parameters on the flow of ordinary second grade and generalized second grade fluid are investigated graphically by plotting velocity profiles.展开更多
In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit n...In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit numerical method is employed to solve the direct problem.For the inverse problem,we first obtain the fractional sensitivity equation by means of the digamma function,and then we propose an efficient numerical method,that is,the Levenberg-Marquardt algorithm based on a fractional derivative,to estimate the unknown order of a Riemann-Liouville fractional derivative.In order to demonstrate the effectiveness of the proposed numerical method,two cases in which the measurement values contain random measurement error or not are considered.The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a RiemannLiouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.展开更多
The fractional calculus approach in the constitutive relationship model of viscoelastic fluid was introduced. The velocity and temperature fields of the vortex flow of a generalized second fluid with fractional deriva...The fractional calculus approach in the constitutive relationship model of viscoelastic fluid was introduced. The velocity and temperature fields of the vortex flow of a generalized second fluid with fractional derivative model were described by fractional partial differential equations. Exact analytical solutions of these differential equations were obtained by using the discrete Laplace transform of the sequential fractional derivatives and generalized Mittag-Leffler function. The influence of fractional coefficient on the decay of vortex velocity and diffusion of temperature was also analyzed.展开更多
This paper deals with the rotational flow of a generalized second grade fluid, within a circular cylinder, due to a torsional shear stress. The fractional calculus approach in the constitutive relationship model of a ...This paper deals with the rotational flow of a generalized second grade fluid, within a circular cylinder, due to a torsional shear stress. The fractional calculus approach in the constitutive relationship model of a second grade fluid is introduced. The velocity field and the resulting shear stress are determined by means of the Laplace and finite Hankel transforms to satisfy all imposed initial and boundary conditions. The solutions corresponding to second grade fluids as well as those for Newtonian fluids are obtained as limiting cases of our general solutions. The influence of the fractional coefficient on the velocity of the fluid is also analyzed by graphical illustrations.展开更多
In this paper, it is defined that left *-α-derivation, generalized left *-α-derivation and *-α-derivation, generalized *-α-derivation of a *-ring where α is a homomorphism. The results which proved for generalize...In this paper, it is defined that left *-α-derivation, generalized left *-α-derivation and *-α-derivation, generalized *-α-derivation of a *-ring where α is a homomorphism. The results which proved for generalized left *-derivation of R in [1] are extended by using generalized left *-α-derivation. The commutativity of a *-ring with generalized left *-α-derivation is investigated and some results are given for generalized *-α-derivation.展开更多
We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law ...We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law model.Unlike most studies on this topic,we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent,simultaneously,by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT)which are strictly equipped with a set of constitutive boundary conditions(CBCs),and through which both the stiffness-hardening and stiffness-softening effects of the structures can be observed with the length-scale parameters changed.All the variables presented in the differential problem formulation are discretized.The numerical solution of the dynamic instability region(DIR)of various bounded beams is then developed via the generalized differential quadrature method(GDQM).After verifying the present formulation and results,we examine the effects of different parameters such as the nonlocal/gradient length-scale parameters,the static force factor,the functionally graded(FG)parameter,and the porosity parameter on the DIR.Furthermore,the influence of considering the size-dependent hygro-thermal load is also presented.展开更多
The main purpose of the current article is to develop a novel boundary element model for solving fractional-order nonlinear generalized porothermoelastic wave propagation problems in the context of temperaturedependen...The main purpose of the current article is to develop a novel boundary element model for solving fractional-order nonlinear generalized porothermoelastic wave propagation problems in the context of temperaturedependent functionally graded anisotropic(FGA)structures.The system of governing equations of the considered problem is extremely very difficult or impossible to solve analytically due to nonlinearity,fractional order diffusion and strongly anisotropic mechanical and physical properties of considered porous structures.Therefore,an efficient boundary element method(BEM)has been proposed to overcome this difficulty,where,the nonlinear terms were treated using the Kirchhoff transformation and the domain integrals were treated using the Cartesian transformation method(CTM).The generalized modified shift-splitting(GMSS)iteration method was used to solve the linear systems resulting from BEM,also,GMSS reduces the iterations number and CPU execution time of computations.The numerical findings show the effects of fractional order parameter,anisotropy and functionally graded material on the nonlinear porothermoelastic stress waves.The numerical outcomes are in very good agreement with those from existing literature and demonstrate the validity and reliability of the proposed methodology.展开更多
The induced temperature, displacement, and stress fields in an infinite nonhomogeneous elastic medium having a spherical cavity are obtained in the context dual-phase-lag model. The surface of the cavity is stress fre...The induced temperature, displacement, and stress fields in an infinite nonhomogeneous elastic medium having a spherical cavity are obtained in the context dual-phase-lag model. The surface of the cavity is stress free and is subjected to a thermal shock. The material is elastic and has an in?homogeneity in the radial direction. The type of non homogeneity is such that the elastic constants, thermal conductivity and density are propor?tional to the nth power of the radial distance. The solutions are obtained analytically employing the Laplace transform technique. The numerical inversion of the transforms is carried out using Fourier series expansions. The stresses, temperature and displacement are computed and presented graphically. A comparison of the results for different theories is presented.展开更多
A nonlocal study of the vibration responses of functionally graded(FG)beams supported by a viscoelastic Winkler-Pasternak foundation is presented.The damping responses of both the Winkler and Pasternak layers of the f...A nonlocal study of the vibration responses of functionally graded(FG)beams supported by a viscoelastic Winkler-Pasternak foundation is presented.The damping responses of both the Winkler and Pasternak layers of the foundation are considered in the formulation,which were not considered in most literature on this subject,and the bending deformation of the beams and the elastic and damping responses of the foundation as nonlocal by uniting the equivalently differential formulation of well-posed strain-driven(ε-D)and stress-driven(σ-D)two-phase local/nonlocal integral models with constitutive constraints are comprehensively considered,which can address both the stiffness softening and toughing effects due to scale reduction.The generalized differential quadrature method(GDQM)is used to solve the complex eigenvalue problem.After verifying the solution procedure,a series of benchmark results for the vibration frequency of different bounded FG beams supported by the foundation are obtained.Subsequently,the effects of the nonlocality of the foundation on the undamped/damping vibration frequency of the beams are examined.展开更多
The development and utilization of low-grade polymetallic deposits with strategic mineral resources is one of the important measures to alleviate the current high dependence on strategic mineral resources in China. Ho...The development and utilization of low-grade polymetallic deposits with strategic mineral resources is one of the important measures to alleviate the current high dependence on strategic mineral resources in China. However, domestic mining enterprises and most mining consulting and design institutes usually use general industrial indicators to carry out reserve estimation and technical and economic feasibility studies on low-grade polymetallic deposits, which cannot truly reflect the economic value of such deposits. The article expounds on the definitions of net return value (NSR) and on-site total maintenance cost (AISC) of common ore smelters in the evaluation of overseas mineral resources. Taking a low-grade polymetallic copper-molybdenum mine in Guangdong Province as an example, comparing the research results showed the NSR-AISC method and the general industrial index method in low-grade polymetallic deposit. There are huge differences in the results of reserve estimation;through the further introduction of Taylor’s formula and the research results on the relationship between investment intensity and production scale, a more reasonable mine life and investment scale are recommended, and a more in-depth comparative study has been carried out in the dimension of technical and economic indicators. Based on the comparative study of the above two methods in reserve estimation and the evaluation results of technical and economic indicators, the author believes that the NSR-AISC method can better reflect the true value of low-grade polymetallic ore projects, and should be popularized and applied in resource evaluation and development practice. This article further describes the application status of the NSR-AISC method for reserve estimation and the evaluation of technical economic indicators, and suggests the main points that should be paid attention to in the use of the NSR-AISC method.展开更多
In this paper, we study the structure theory of a class of not-finitely graded Lie alge- bras related to generalized Heisenberg-Virasoro algebras. In particular, the derivation algebras, the automorphism groups and th...In this paper, we study the structure theory of a class of not-finitely graded Lie alge- bras related to generalized Heisenberg-Virasoro algebras. In particular, the derivation algebras, the automorphism groups and the second cohomology groups of these Lie algebras are determined.展开更多
The entropy generation and heat transfer characteristics of magnetohydrodynamic (MHD) third-grade fluid flow through a vertical porous microchannel with a convective boundary condition are analyzed. Entropy generation...The entropy generation and heat transfer characteristics of magnetohydrodynamic (MHD) third-grade fluid flow through a vertical porous microchannel with a convective boundary condition are analyzed. Entropy generation due to flow of MHD non-Newtonian third-grade fluid within a microchannel and temperature-dependent viscosity is studied using the entropy generation rate and Vogel's model. The equations describing flow and heat transport along with boundary conditions are first made dimensionless using proper non-dimensional transformations and then solved numerically via the finite element method (FEM). An appropriate comparison is made with the previously published results in the literature as a limiting case of the considered problem. The comparison confirms excellent agreement. The effects of the Grashof number, the Hartmann number, the Biot number, the exponential space-and thermal-dependent heat source (ESHS/THS) parameters, and the viscous dissipation parameter on the temperature and velocity are studied and presented graphically. The entropy generation and the Bejan number are also calculated. From the comprehensive parametric study, it is recognized that the production of entropy can be improved with convective heating and viscous dissipation aspects. It is also found that the ESHS aspect dominates the THS aspect.展开更多
Let R = ⊙n〉0 Rn be a standard graded ring, a ∩ ⊙n〉0 Rn an ideal of R, and M, N two finitely generated graded R-modules. This paper studies the homogeneous components of graded generalized local cohomology modules...Let R = ⊙n〉0 Rn be a standard graded ring, a ∩ ⊙n〉0 Rn an ideal of R, and M, N two finitely generated graded R-modules. This paper studies the homogeneous components of graded generalized local cohomology modules. We show that for any i 〉 0, the n-th graded component Hiα(M, N)n of the i-th generalized local cohomology module of M and N with respect to a vanishes for all n 〉〉 0. Some sufficient conditions are pro- posed to satisfy the equality sup{end(Hiα (M, N)) [ i _〉 0} = sup{end(HiR+ (M, N)) | i 〉 0}. Also, some sufficient conditions are proposed for the tameness of Hiα(M, N) such that i = fRα+(M,N) or i = cdα(M,g), where fRα+(M,N) and cdα(M,g) denote the R+- finiteness dimension and the cohomological dimension of M and N with respect to a, respectively. Finally, we consider the Artinian property of some submodules and quotient modules of Hjα(M, N), where j is the first or last non-minimax level of Hiα(M, N).展开更多
文摘The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governing equations of fractional order generalized thermoelasticity with three-phase lag model for functionally graded materials(FGM)(i.e., material with spatially varying material properties) are established. The analytical solution in the transform domain is obtained by using the eigenvalue approach.The inversion of Laplace transform is done numerically. The graphical results indicate that the fractional parameter has significant effects on all the physical quantities. Thus, we can consider the theory of fractional order generalized thermoelasticity an improvement on studying elastic materials.
文摘This paper is concerned with the determination of thermoelastic displacement, stress and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). The surface of cavity is stress-free and is subjected to a time-dependent thermal shock. The basic equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by an eigenvalue approach. Numerical inversion of the transforms is carried out using the Bellman method. Displacement, stress and temperature are computed and presented graphically. It is found that variation in the thermo-physical properties of a material strongly influences the response to loading. A comparative study with a corresponding homogeneous material is also made.
基金Project supported by National Natural Science Foundation of China (Grant Nos 40476062 and 10374026). Yu Kin-Wah acknowledges the support from RGC Earmarked Grant of the Hong Kong SAR Government.
文摘Under an external uniform electric field, the dielectric response of graded cylindrical composites having generalized dielectric profile inclusions is investigated. The generalized dielectric profile of graded cylindrical inclusion is expressed in the form, εi(r) = c(b + r)^keβr where r is the radial variable of the cylindrical inclusions and c, b, k and β are parameters. The local potential solution of generalized dielectric profile graded composites is derived by means of the power series method and the effective dielectric response is predicted in the dilute limit. Moreover, from the result of generalized profile, the analytical solutions of local potentials and the effective responses of graded composites having three cases of dielectric profiles, i.e., the exponential profile εi(r) = ce^βr, the general power law profile εi(r) = c(b + r)^k and the profile εi(r) = cr^keβr, are sorted out, respectively. In the dilute limit, our exact results are used to test the validity of differential effective dipole approximation (DEDA) for estimating the effective response of graded cylindrical composites, and it is shown that the DEDA is in excellent agreement with the exact result.
基金The project supported by the National Natural Science Foundation of China (10372007,10002003) and CNPC Innovation Fund
文摘The fractional calculus approach in the constitutive relationship model of a generalized second grade fluid is introduced.Exact analytical solutions are obtained for a class of unsteady flows for the generalized second grade fluid with the fractional derivative model between two parallel plates by using the Laplace transform and Fourier transform for fractional calculus.The unsteady flows are generated by the impulsive motion or periodic oscillation of one of the plates.In addition,the solutions of the shear stresses at the plates are also determined.
文摘Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams.
文摘The velocity field and the associated shear stress corresponding to the longitudinal oscillatory flow of a generalized second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. Initially, the fluid and cylinders are at rest and at t = 0+ both cylinders suddenly begin to oscillate along their common axis with simple harmonic motions having angular frequencies Ω1 and Ω2. The solutions that have been obtained are presented under integral and series forms in terms of the generalized G and R functions and satisfy the governing differential equation and all imposed initial and boundary conditions. The respective solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for the similar flow of ordinary second grade fluid and Newtonian fluid are also obtained as limiting cases of our general solutions. At the end, the effect of different parameters on the flow of ordinary second grade and generalized second grade fluid are investigated graphically by plotting velocity profiles.
基金supported by the National Natural Science Foundation of China(Grants 11472161,11102102,and 91130017)the Independent Innovation Foundation of Shandong University(Grant 2013ZRYQ002)the Natural Science Foundation of Shandong Province(Grant ZR2014AQ015)
文摘In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit numerical method is employed to solve the direct problem.For the inverse problem,we first obtain the fractional sensitivity equation by means of the digamma function,and then we propose an efficient numerical method,that is,the Levenberg-Marquardt algorithm based on a fractional derivative,to estimate the unknown order of a Riemann-Liouville fractional derivative.In order to demonstrate the effectiveness of the proposed numerical method,two cases in which the measurement values contain random measurement error or not are considered.The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a RiemannLiouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.
文摘The fractional calculus approach in the constitutive relationship model of viscoelastic fluid was introduced. The velocity and temperature fields of the vortex flow of a generalized second fluid with fractional derivative model were described by fractional partial differential equations. Exact analytical solutions of these differential equations were obtained by using the discrete Laplace transform of the sequential fractional derivatives and generalized Mittag-Leffler function. The influence of fractional coefficient on the decay of vortex velocity and diffusion of temperature was also analyzed.
文摘This paper deals with the rotational flow of a generalized second grade fluid, within a circular cylinder, due to a torsional shear stress. The fractional calculus approach in the constitutive relationship model of a second grade fluid is introduced. The velocity field and the resulting shear stress are determined by means of the Laplace and finite Hankel transforms to satisfy all imposed initial and boundary conditions. The solutions corresponding to second grade fluids as well as those for Newtonian fluids are obtained as limiting cases of our general solutions. The influence of the fractional coefficient on the velocity of the fluid is also analyzed by graphical illustrations.
文摘In this paper, it is defined that left *-α-derivation, generalized left *-α-derivation and *-α-derivation, generalized *-α-derivation of a *-ring where α is a homomorphism. The results which proved for generalized left *-derivation of R in [1] are extended by using generalized left *-α-derivation. The commutativity of a *-ring with generalized left *-α-derivation is investigated and some results are given for generalized *-α-derivation.
基金Project supported by the National Natural Science Foundation of China(No.12172169)the Natural Sciences and Engineering Research Council of Canada(No.NSERC RGPIN-2023-03227)。
文摘We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law model.Unlike most studies on this topic,we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent,simultaneously,by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT)which are strictly equipped with a set of constitutive boundary conditions(CBCs),and through which both the stiffness-hardening and stiffness-softening effects of the structures can be observed with the length-scale parameters changed.All the variables presented in the differential problem formulation are discretized.The numerical solution of the dynamic instability region(DIR)of various bounded beams is then developed via the generalized differential quadrature method(GDQM).After verifying the present formulation and results,we examine the effects of different parameters such as the nonlocal/gradient length-scale parameters,the static force factor,the functionally graded(FG)parameter,and the porosity parameter on the DIR.Furthermore,the influence of considering the size-dependent hygro-thermal load is also presented.
文摘The main purpose of the current article is to develop a novel boundary element model for solving fractional-order nonlinear generalized porothermoelastic wave propagation problems in the context of temperaturedependent functionally graded anisotropic(FGA)structures.The system of governing equations of the considered problem is extremely very difficult or impossible to solve analytically due to nonlinearity,fractional order diffusion and strongly anisotropic mechanical and physical properties of considered porous structures.Therefore,an efficient boundary element method(BEM)has been proposed to overcome this difficulty,where,the nonlinear terms were treated using the Kirchhoff transformation and the domain integrals were treated using the Cartesian transformation method(CTM).The generalized modified shift-splitting(GMSS)iteration method was used to solve the linear systems resulting from BEM,also,GMSS reduces the iterations number and CPU execution time of computations.The numerical findings show the effects of fractional order parameter,anisotropy and functionally graded material on the nonlinear porothermoelastic stress waves.The numerical outcomes are in very good agreement with those from existing literature and demonstrate the validity and reliability of the proposed methodology.
文摘The induced temperature, displacement, and stress fields in an infinite nonhomogeneous elastic medium having a spherical cavity are obtained in the context dual-phase-lag model. The surface of the cavity is stress free and is subjected to a thermal shock. The material is elastic and has an in?homogeneity in the radial direction. The type of non homogeneity is such that the elastic constants, thermal conductivity and density are propor?tional to the nth power of the radial distance. The solutions are obtained analytically employing the Laplace transform technique. The numerical inversion of the transforms is carried out using Fourier series expansions. The stresses, temperature and displacement are computed and presented graphically. A comparison of the results for different theories is presented.
基金the National Natural Science Foundation of China(No.12172169)the China Scholarship Council(CSC)(No.202006830038)the Natural Sciences and Engineering Research Council of Canada(No.RGPIN-2017-03716115112)。
文摘A nonlocal study of the vibration responses of functionally graded(FG)beams supported by a viscoelastic Winkler-Pasternak foundation is presented.The damping responses of both the Winkler and Pasternak layers of the foundation are considered in the formulation,which were not considered in most literature on this subject,and the bending deformation of the beams and the elastic and damping responses of the foundation as nonlocal by uniting the equivalently differential formulation of well-posed strain-driven(ε-D)and stress-driven(σ-D)two-phase local/nonlocal integral models with constitutive constraints are comprehensively considered,which can address both the stiffness softening and toughing effects due to scale reduction.The generalized differential quadrature method(GDQM)is used to solve the complex eigenvalue problem.After verifying the solution procedure,a series of benchmark results for the vibration frequency of different bounded FG beams supported by the foundation are obtained.Subsequently,the effects of the nonlocality of the foundation on the undamped/damping vibration frequency of the beams are examined.
文摘The development and utilization of low-grade polymetallic deposits with strategic mineral resources is one of the important measures to alleviate the current high dependence on strategic mineral resources in China. However, domestic mining enterprises and most mining consulting and design institutes usually use general industrial indicators to carry out reserve estimation and technical and economic feasibility studies on low-grade polymetallic deposits, which cannot truly reflect the economic value of such deposits. The article expounds on the definitions of net return value (NSR) and on-site total maintenance cost (AISC) of common ore smelters in the evaluation of overseas mineral resources. Taking a low-grade polymetallic copper-molybdenum mine in Guangdong Province as an example, comparing the research results showed the NSR-AISC method and the general industrial index method in low-grade polymetallic deposit. There are huge differences in the results of reserve estimation;through the further introduction of Taylor’s formula and the research results on the relationship between investment intensity and production scale, a more reasonable mine life and investment scale are recommended, and a more in-depth comparative study has been carried out in the dimension of technical and economic indicators. Based on the comparative study of the above two methods in reserve estimation and the evaluation results of technical and economic indicators, the author believes that the NSR-AISC method can better reflect the true value of low-grade polymetallic ore projects, and should be popularized and applied in resource evaluation and development practice. This article further describes the application status of the NSR-AISC method for reserve estimation and the evaluation of technical economic indicators, and suggests the main points that should be paid attention to in the use of the NSR-AISC method.
基金Supported by National Natural Science Foundation of China(Grant Nos.11431010,11371278 and 11271284)Shanghai Municipal Science and Technology Commission(Grant No.12XD1405000)
文摘In this paper, we study the structure theory of a class of not-finitely graded Lie alge- bras related to generalized Heisenberg-Virasoro algebras. In particular, the derivation algebras, the automorphism groups and the second cohomology groups of these Lie algebras are determined.
基金financial support under the Dr. D. S. KOTHARI Postdoctoral Fellowship Scheme (No. F.4-2/2006 (BSR)/MA/16-17/0043)
文摘The entropy generation and heat transfer characteristics of magnetohydrodynamic (MHD) third-grade fluid flow through a vertical porous microchannel with a convective boundary condition are analyzed. Entropy generation due to flow of MHD non-Newtonian third-grade fluid within a microchannel and temperature-dependent viscosity is studied using the entropy generation rate and Vogel's model. The equations describing flow and heat transport along with boundary conditions are first made dimensionless using proper non-dimensional transformations and then solved numerically via the finite element method (FEM). An appropriate comparison is made with the previously published results in the literature as a limiting case of the considered problem. The comparison confirms excellent agreement. The effects of the Grashof number, the Hartmann number, the Biot number, the exponential space-and thermal-dependent heat source (ESHS/THS) parameters, and the viscous dissipation parameter on the temperature and velocity are studied and presented graphically. The entropy generation and the Bejan number are also calculated. From the comprehensive parametric study, it is recognized that the production of entropy can be improved with convective heating and viscous dissipation aspects. It is also found that the ESHS aspect dominates the THS aspect.
文摘Let R = ⊙n〉0 Rn be a standard graded ring, a ∩ ⊙n〉0 Rn an ideal of R, and M, N two finitely generated graded R-modules. This paper studies the homogeneous components of graded generalized local cohomology modules. We show that for any i 〉 0, the n-th graded component Hiα(M, N)n of the i-th generalized local cohomology module of M and N with respect to a vanishes for all n 〉〉 0. Some sufficient conditions are pro- posed to satisfy the equality sup{end(Hiα (M, N)) [ i _〉 0} = sup{end(HiR+ (M, N)) | i 〉 0}. Also, some sufficient conditions are proposed for the tameness of Hiα(M, N) such that i = fRα+(M,N) or i = cdα(M,g), where fRα+(M,N) and cdα(M,g) denote the R+- finiteness dimension and the cohomological dimension of M and N with respect to a, respectively. Finally, we consider the Artinian property of some submodules and quotient modules of Hjα(M, N), where j is the first or last non-minimax level of Hiα(M, N).