期刊文献+
共找到226篇文章
< 1 2 12 >
每页显示 20 50 100
A modified single edge V-notched beam method for evaluating surface fracture toughness of thermal barrier coatings
1
作者 Haoran BAI Zhanyu WANG +2 位作者 Sangyu LUO Zhaoliang QU Daining FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第5期693-710,共18页
The surface fracture toughness is an important mechanical parameter for studying the failure behavior of air plasma sprayed(APS)thermal barrier coatings(TBCs).As APS TBCs are typical multilayer porous ceramic material... The surface fracture toughness is an important mechanical parameter for studying the failure behavior of air plasma sprayed(APS)thermal barrier coatings(TBCs).As APS TBCs are typical multilayer porous ceramic materials,the direct applications of the traditional single edge notched beam(SENB)method that ignores those typical structural characters may cause errors.To measure the surface fracture toughness more accurately,the effects of multilayer and porous characters on the fracture toughness of APS TBCs should be considered.In this paper,a modified single edge V-notched beam(MSEVNB)method with typical structural characters is developed.According to the finite element analysis(FEA),the geometry factor of the multilayer structure is recalculated.Owing to the narrower V-notches,a more accurate critical fracture stress is obtained.Based on the Griffith energy balance,the reduction of the crack surface caused by micro-defects is corrected.The MSEVNB method can measure the surface fracture toughness more accurately than the SENB method. 展开更多
关键词 thermal barrier coating(TBC) surface fracture toughness modified single edge V-notched beam(MSEVNB)method multilayer structure micro-defect
下载PDF
Characterization of functionally graded ZrO_2 thermal barrier coatings sprayed by supersonic plasma spray with dual powder feed ports 被引量:1
2
作者 韩志海 王海军 +1 位作者 周世魁 徐滨士 《Journal of Central South University》 SCIE EI CAS 2005年第S2期257-260,共4页
The functionally graded thermal barrier coatings (FG-TBCs) with 80%ZrO2-13%CeO2-7%Y2O3 (C-YSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports syst... The functionally graded thermal barrier coatings (FG-TBCs) with 80%ZrO2-13%CeO2-7%Y2O3 (C-YSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports system. The thermal shock experiment of FG-TBCs specimens was carried out by means of the automatic thermal cycle device, in which the samples were heated to 1200℃ by oxygen-acetylene flame jet then water-quenched to ambient temperature. The temperature—time curves of specimens and photographs can be watched on-line and recorded by a computer during the test. The results show that the totally 1mm-thick FG-TBCs have excellent thermal shock resistance due to the fact that the coatings have no any peeling-off after 200 thermal cycles. The microstructures and morphologies of FG-TBCs were characterized and analyzed by SEM. 展开更多
关键词 supersonic plasma spray (S-PS) dual powder feed ports functionally graded thermal barrier coatings (FG-tbcs) thermal shock
下载PDF
Characterization of Failure Mechanisms of Duplex and Graded Thermal Barrier Coatings Exposed to Thermal Shock Test 被引量:1
3
作者 A.F.Waheed and H.M.Soliman(Dept. of Metallurgy, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1996年第1期35-40,共6页
The beginning of failure of a (ZrO2-7%Y2O3)/(Ni-22%Co-17%Cr-12.5%Al-0.6%Y) duplex andgraded coating systems on lnconel 617 and IN738LC in burner rig tests has been characterized.The test conditions are 40 s heating up... The beginning of failure of a (ZrO2-7%Y2O3)/(Ni-22%Co-17%Cr-12.5%Al-0.6%Y) duplex andgraded coating systems on lnconel 617 and IN738LC in burner rig tests has been characterized.The test conditions are 40 s heating up to 75O℃ substrate temperature followed by 80 s aircooling. Failure is considered at the appearance of the first bright spot during heating period.Stresses due to thermal expansion mismatch strains on cooling are the probable cause of life-limiting in this conditions of testing. 展开更多
关键词 Co MILLER Characterization of Failure Mechanisms of Duplex and graded thermal barrier coatings Exposed to thermal Shock Test
下载PDF
Impedance spectroscopy study of high-temperature oxidation of Gd_2O_3-Yb_2O_3 codoped zirconia thermal barrier coatings 被引量:2
4
作者 张丹华 郭洪波 宫声凯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1061-1067,共7页
3Gd2O3-3Yb2O3-4Y2O3 (mole fraction, %) co-doped ZrO2 (GY-YSZ) thermal barrier coatings (TBCs) were produced by electron beam physical vapor deposition (EB-PVD). The oxidation behavior of GY-YSZ at 1 050 ℃ was... 3Gd2O3-3Yb2O3-4Y2O3 (mole fraction, %) co-doped ZrO2 (GY-YSZ) thermal barrier coatings (TBCs) were produced by electron beam physical vapor deposition (EB-PVD). The oxidation behavior of GY-YSZ at 1 050 ℃ was investigated using impedance spectroscopy (IS) combined with scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffractometry (XRD). Various electrical responses observed in the impedance spectra corresponding to GY-YSZ grains and grain boundaries were explained using circuit modeling. The change in the conduction mechanism of GY-YSZ was found to be related to the O^2- vacancy and lattice distortion due to the stabilizer diffusion during the oxidation. The results also suggested that the specific oxidation information about the GY-YSZ grains and grain boundaries should be acquired at a moderate measurement temperature, which was related to the resistance value in the impedance spectra. The resistance values of the GY-YSZ grains and grain boundaries should be measured at 200 ℃ and 300 ℃, respectively. 展开更多
关键词 rare earth oxide GD2O3 YB2O3 thermal barrier coatings tbcs OXIDATION impedance spectroscopy (IS)
下载PDF
Effects of supersonic fine particles bombarding on thermal barrier coatings after isothermal oxidation 被引量:1
5
作者 韩玉君 叶福兴 +2 位作者 丁坤英 王志平 陆冠雄 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1629-1637,共9页
This work was attempted to modify the current technology for thermal barrier coatings(TBCs) by adding an additional step of surface modification,namely,supersonic fine particles bombarding(SFPB) process,on bond co... This work was attempted to modify the current technology for thermal barrier coatings(TBCs) by adding an additional step of surface modification,namely,supersonic fine particles bombarding(SFPB) process,on bond coat before applying the topcoat.After isothermal oxidation at 1000 °C for different time,the surface state of the bond coat and its phase transformation were investigated using X-ray diffraction(XRD),scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectrometry(EDS),transmission electron microscopy(TEM) and Cr3+ luminescence spectroscopy.The dislocation density significantly increases after SFPB process,which can generate a large number of diffusion channels in the area of the surface of the bond coat.At the initial stage of isothermal oxidation,the diffusion velocity of Al in the bond coat significantly increases,leading to the formation of a layer of stable α-Al2O3 phase.A great number of Cr3+ positive ions can diffuse via diffusion channels during the transient state of isothermal oxidation,which can lead to the presence of(Al0.9Cr0.1)2O3 phase and accelerate the γ→θ→α phase transformation.Cr3+ luminescence spectroscopy measurement shows that the residual stress increases at the initial stage of isothermal oxidation and then decreases.The residual stress after isothermal oxidation for 310 h reduces to 0.63 GPa compared with 0.93 GPa after isothermal oxidation for 26 h.In order to prolong the lifespan of TBCs,a layer of continuous,dense and pure α-Al2O3 with high oxidation resistance at the interface between topcoat and bond coat can be obtained due to additional SFPB process. 展开更多
关键词 thermal barrier coatingstbcs supersonic fine particles bombarding(SFPB) isothermal oxidation Cr3+ luminescence spectroscopy dislocation density diffusion channel
下载PDF
Evaluation of La AlO_3 as top coat material for thermal barrier coatings 被引量:8
6
作者 N.VOURDAS E.MARATHONITI +5 位作者 P.K.PANDIS Chr.ARGIRUSIS G.SOURKOUNI C.LEGROS S.MIRZA V.N.STATHOPOULOS 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第8期1582-1592,共11页
Perovskite is a versatile group of oxide materials allowing their properties to be tailored by composition towards specific requirements. La Al O3 was prepared to study and report its properties in the context of its ... Perovskite is a versatile group of oxide materials allowing their properties to be tailored by composition towards specific requirements. La Al O3 was prepared to study and report its properties in the context of its potential in thermal barrier coatings(TBCs) technology. A citric acid method was used for synthesis and the perovskite structure was confirmed using XRD and FT-IR. Viscosity of the solution precursor was checked as well as the particle size by laser particle size analysis. Densification behavior of the material was followed by conventional sintering and by spark plasma sintering. Apparent porosity by the Archimedes method, thermal conductivity and thermal expansion coefficient were studied. Mechanical and fracture properties were measured at elevated temperatures up to 1300 ℃ For samples sintered at 1200-1400 ℃, coefficient of thermal expansion ranged from 5.5×10^-6 to 6.5×10^-6 K^-1 and thermal conductivity ranged between 2.2 and 3.4 W/(m?K). Elastic modulus and ultimate stress were measured at 1000-1300 ℃, while by micro-indentation, fracture toughness was found to be 3 MPa·m1/2. As the sintering temperature increased from 1200 to 1500 ℃, significant densification from 3.21 to 5.81 g/cm^3 was found, indicating that material annealing should be made at least at 1400 ℃. Under this condition, negligible dimensional change in phase transition temperature of La Al O3 from the rhombohedral(R3 c) to the ideal cubic(Pm3 m) is found. Data reported in this work can be useful for comparing the mechanical and fracture behaviours of different TBCs developed involving La Al O3 as well as input for numerical simulations. 展开更多
关键词 perovsldte lanthanum aluminate thermal barrier coating (TBC)
下载PDF
Failure of EB-PVD Thermal Barrier Coatings Subjected to Thermo-Mechanical Loading 被引量:1
7
作者 CHEN Chen ZHANG Chun-xia GUO Hong-bo GONG Sheng-kai ZHANG Yue 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期82-85,共4页
Thermal barrier coatings (TBCs) were developed to protect metallic blades and vanes working in turbo-engines. The two-layered structure TBCs, consisting of NiCoCrAlY bond coat and yttria stabilized zirconia (YSZ),... Thermal barrier coatings (TBCs) were developed to protect metallic blades and vanes working in turbo-engines. The two-layered structure TBCs, consisting of NiCoCrAlY bond coat and yttria stabilized zirconia (YSZ), were deposited on a cylinder of superalloy substrate by the electron beam-physical vapor deposition (EB-PVD). The failure mechanism of the TBCs was investigated with a thermo-mechanical fatigue testing system under the service condition similar to that for turbine blades. Non-destructive evaluation of the coated specimens was conducted through the impedance spectroscopy. It is found that the crack initiation mainly takes place on the top coat at the edge of the heated zones. 展开更多
关键词 electron beam-physical vapor deposition (EB-PVD) thermal barrier coatings tbcs thermal-mechanical loading impedance spectroscopy FAILURE
下载PDF
Review of Numerical Simulation of TGO Growth in Thermal Barrier Coatings 被引量:1
8
作者 Quan Wen Fulei Jing +2 位作者 Changxian Zhang Shibai Tang Junjie Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第8期361-391,共31页
Thermally grown oxide(TGO)is a critical factor for the service life of thermal barrier coatings(TBC).Numerical simulations of the growth process of TGO have become an effective means of comprehensively understanding t... Thermally grown oxide(TGO)is a critical factor for the service life of thermal barrier coatings(TBC).Numerical simulations of the growth process of TGO have become an effective means of comprehensively understanding the progressive damage of the TBC system.At present,technologies of numerical simulation to TGO growth include two categories:coupled chemical-mechanical methods and mechanical equivalent methods.The former is based on the diffusion analysis of oxidizing elements,which can describe the influence of bond coat(BC)consumption and phase transformation in the growth process of TGO on the mechanical behavior of each layer of TBC,and has high accuracy for the thickness evolution of TGO,but they cannot describe the lateral growth of TGO and the rumpling phenomenon induced.The latter focuses on describing the final stress and strain state after the growth of a specific TGO rather than the complete growth processes of TGO.Based on the measured TGO thickness growth curve,simulations of thickening and lateral growth can be achieved by directly applying anisotropic volumetric strain to oxidized elements and switching elements properties from the BC to the TGO. 展开更多
关键词 thermal grown oxide(TGO) numerical simulation thermal barriers coatings(TBC) finite element method lateral growth
下载PDF
Influence of the Thermal Barrier Coatings Design on the Oxidation Behavior
9
作者 B. Saeedi A. Sabour +1 位作者 A. Ebadi A.M. Khoddami 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第4期499-507,共9页
The properties of two different types of thermal barrier coatings (TBCs) were compared to improve the surface characteristics on high temperature components. These TBCs consisted of a duplex TBC and a five-layered f... The properties of two different types of thermal barrier coatings (TBCs) were compared to improve the surface characteristics on high temperature components. These TBCs consisted of a duplex TBC and a five-layered functionally graded TBC. NiCrAIY bond coats were deposited on a number of Inconel-738LC specimens using high velocity oxy-fuel spraying (HVOF) technique. For duplex coating, a group of these specimens were coated with yttria stabilized zirconia (YSZ) using plasma spray technique. Functionally graded NiCrAIY/YSZ coatings were fabricated by plasma spray using co-injection of the two different powders in a single plasma torch. The amount of zirconia in functionally graded coatings were gradually increased from 30 to 100 vol. pct. Microstructural changes, thermally grown oxide (TGO) layer growth and damage initiation of the coatings were investigated as a function of isothermal oxidation test at 970℃. As a complementary test, the performance of the fabricated coatings by the optimum processing conditions was evaluated as a function of intense thermal cycling test at 1100℃. Also the strength of the adhesive coatings of the substrate was also measured. Microstructural characterization was analyzed by scanning electron microscopy (SEM) and optical microscopy whereas phase analysis and chemical composition changes of the coatings and oxides formed during the tests were studied by XRD (X-ray diffraction) and EDS (energy dispersive spectrometer). The results showed that microstructure and compositions gradually varied in the functionally graded coatings. By comparison of duplex and functionally graded TBCs oxidation behavior (duplex failure after 1700 h and funcitionally graded TECs failure after 2000 h), thermal shock test and adhesion strength of the coatings, the functionally graded TBC had better performance and more durability. 展开更多
关键词 thermal barrier coatings tbcs Isothermal oxidation Functionally graded TBC thermally grown oxide Bond strength High velocity oxy-fuel spraying
下载PDF
CMAS-phobic and infiltration-inhibiting protective layer material for thermal barrier coatings
10
作者 Shjun Meng Lei Guo +2 位作者 Hongbo Guo Yuanpeng Wang Hongli Liu 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第8期1254-1267,共14页
Calcium-magnesium-alumina-silicate(CMAS)corrosion has attracted special attention in the thermal barrier coating(TBC)field.At high temperatures,when CMAS melts,it adheres to the coating surface and penetrates the inte... Calcium-magnesium-alumina-silicate(CMAS)corrosion has attracted special attention in the thermal barrier coating(TBC)field.At high temperatures,when CMAS melts,it adheres to the coating surface and penetrates the interior,severely destroying the TBC.In this study,a promising CMAS-phobic and infiltration-inhibiting material,GdPO4,on which molten CMAs is difficult to wet and penetrate,was proposed.These desirable attributes are explained by analyzing the material characteristics of GdPO_(4) and its interfacial reaction with CMAS.GdPO4 is demonstrated to have low surface energy,making it difficult for molten CMAS to wet and adhere to the surface.When in contact with molten CMAS,a double-layer structured reaction layer consisting of an acicular upper sublayer and a compact lower sublayer is formed on the GdPO4 surface,which can effectively impede molten CMAS spreading and penetration.First-principles calculation results revealed that the reaction layer has low surface energy and low adhesion to CMAS,which are favorable for molten CMAS phobicity.Additionally,the formation of the reaction layer increases the viscosity of the molten CMAS,which can increase melt wetting and penetration.Hence,GdPO4,which exhibits excellent CMAS-phobicity and infiltration-inhibiting ability,is a promising protective layer material for TBCs against CMAS adhesion and attack. 展开更多
关键词 thermal barrier coatings(tbcs) calcium-magnesium-alumina-silicate(CMAS)-phobicity GdPO_(4) interface reaction layer first-principles calculation
原文传递
Corrosion behavior of Gd_(2)Zr_(2)O_(7)thermal barrier coatings under Fe-containing environmental sediment attack
11
作者 Lei Guo Yanyan Li Kai Yan 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第4期447-462,共16页
Environmental sediments mainly consisting of CaO–MgO–Al_(2)O_(3)–SiO_(2)(CMAS)corrosion are a serious threat to thermal barrier coatings(TBCs),in which Fe element is usually ignored.Gd_(2)Zr_(2)O_(7)TBCs are famous... Environmental sediments mainly consisting of CaO–MgO–Al_(2)O_(3)–SiO_(2)(CMAS)corrosion are a serious threat to thermal barrier coatings(TBCs),in which Fe element is usually ignored.Gd_(2)Zr_(2)O_(7)TBCs are famous for their excellent CMAS resistance.In this study,the characteristics of Fe-containing environmental sediments(CMAS-Fe)and their corrosiveness to Gd_(2)Zr_(2)O_(7)coatings were investigated.Four types of CMAS-Fe glass with different Fe contents were fabricated.Their melting points were measured to be 1322–1344℃,and the high-temperature viscosity showed a decreasing trend with increasing Fe contents.The corrosion behavior of four types of CMAS-Fe to Gd_(2)Zr_(2)O_(7)coatings at 1350℃was investigated.At the initial corrosion stage(0.1 h),anorthite was precipitated in CMAS-Fe with a high Ca:Si ratio,while Fe-garnet was formed in the melt with the highest Fe content.Prolonging the corrosion time resulted in the formation of a reaction layer,which exhibited an interpenetrating network composed of Gd-oxyapatite,ZrO_(2),and residual CMAS-Fe.Some spinel was precipitated within the reaction layer.After 1 h or even longer time,the reaction layers tended to be stable and compact,which had comparable hardness and fracture toughness to those of Gd_(2)Zr_(2)O_(7)coatings.Under the cyclic CMAS-Fe attack,the residual CMAS-Fe in the interpenetrating network provided a pathway for the redeposited CMAS-Fe infiltration,resulting in the continuous growth of the reaction layer.As a result,the Gd_(2)Zr_(2)O_(7)coatings had a large consumption in the thickness,degrading the coating performance.Therefore,the Gd_(2)Zr_(2)O_(7)coatings exhibit unsatisfactory corrosion resistance to CMAS-Fe attack. 展开更多
关键词 thermal barrier coatings(tbcs) Gd_(2)Zr_(2)O_(7) Fe-containing CaO-MgO-Al2O3-SiO_(2)(CMAS) corrosion resistance reaction layer
原文传递
Effects of Shot Peening Process on Thermal Cycling Lifetime of TBCs Prepared by EB-PVD 被引量:5
12
作者 ZHOU Zhao-hui GONG Sheng-kai +3 位作者 LI He-fei XU Hui-bin ZHANG Chun-gang WANG Lu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第2期145-147,共3页
Conventional two-layered thermal barrier coatings (TBCs) are prepared by electron beam physical vapor deposition (EB-PVD) with ZrO2-8 wt% Y2O3 (8YSZ) as top coat and CoCrAlY as bond coat on disk-shaped Ni based ... Conventional two-layered thermal barrier coatings (TBCs) are prepared by electron beam physical vapor deposition (EB-PVD) with ZrO2-8 wt% Y2O3 (8YSZ) as top coat and CoCrAlY as bond coat on disk-shaped Ni based super-alloy. In this paper, three kinds of shot peening process with different lengths of operating time were adopted for bond coating. As a result, changes took place in its surface roughness and the surface micro-hardness. A thermal cycling test at 1 273 Kx55 rain and another at room temperature for 5 min were performed to study the effects of shot peening process on the thermal cycling lifetime of TBCs. It is found that a moderate shot peening process will be able to prolong the life time. The oxidation dynamic of the as-processed TBCs basically accords with the parabolic rule, and the oxidation test also attests to the spallation between YSZ and thermal growth oxide (TGO) responsible mainly for the failure of TBCs. 展开更多
关键词 thermal cycling lifetime shot peening thermal barrier coatings tbcs
下载PDF
THE INFLUENCE OF Mo DIFFUSION ON THE THERMAL BEHAVIOR OF TBCs ON Ni_3Al BASED ALLOY IC-6 被引量:2
13
作者 D.B. Zhang S.K. Gong +1 位作者 H.B. Xu Y.F. Han 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第1期45-48,共4页
Conventional two-layered structure thermal barrier coatings (TBCs) were prepared onto γ'-Ni3Al based alloy IC-6 by electron beam physical vapor deposition (EB-PVD). Isothermal oxidation and thermal cycling tests ... Conventional two-layered structure thermal barrier coatings (TBCs) were prepared onto γ'-Ni3Al based alloy IC-6 by electron beam physical vapor deposition (EB-PVD). Isothermal oxidation and thermal cycling tests were carried out to investigate the effect of Mo content at the interface between bond coat and ceramic top coat caused by diffusion. It has been found that the alloy coated with TBCs presented the lowest oxidation weight gain value for the reason that the ceramic top coat in TBC system can effectively stop Mo oxides evaporating. The life time of TBCs has close relation with Mo content at the interface between the bond coat and top coat. Spaliation of ceramic top coat occurred during thermal cyclic testing when Mo atoms accumulated at the interface up to certain amount to decline the combination between the bond coat and top coat. 展开更多
关键词 EB-PVD thermal barrier coatings (tbcs) thermal cyclic diffusion
下载PDF
DETERMINATION OF CREEP PROPERTIES OF THERMAL BARRIER COATING(TBC)SYSTEMS FROM THE INDENTATION CREEP TESTING WITH ROUND FLAT INDENTERS
14
作者 B.Zhao B.X.Xu +1 位作者 J.Liu Z.F.Yue 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期503-508,共6页
Indentation creep behavior with cylindrical flat indenters on the thermal barrier coating (TBC) was studied by finite element method (FEM). On ike constant applied indentation creep stress, there is a steady creep rat... Indentation creep behavior with cylindrical flat indenters on the thermal barrier coating (TBC) was studied by finite element method (FEM). On ike constant applied indentation creep stress, there is a steady creep rate for each case studied for different creep properties of the TBC system. The steady creep depth rate depends on the applied indentation creep stress and size of the indenters as well as the creep properties of the bond coat of the TBC and the substrate. The possibilities to determine the creep properties of a thermal barrier system from indention creep testing were discussed. As an example, with two different size indenters, the creep properties of bond coat of the TBC system can be derived by an inverse FEM method. This study not only provides a numerical method to obtain the creep properties of the TBC system, but also extends the application of indentation creep method with cylindrical flat indenters. 展开更多
关键词 thermal barrier coating (TBC) system indention creep testing finite element creep analysis determination of creep parameters bond coat
下载PDF
适用于掺氢燃气轮机的新型环境/热障涂层
15
作者 王铀 张晓东 +5 位作者 郝佩 韩旭 邓路炜 李国强 魏福双 吉祥 《发电技术》 CSCD 2024年第5期868-877,共10页
【目的】随着国家“双碳”战略(碳达峰、碳中和)的实施,现有的热防护涂层结构难以满足未来燃气轮机热防护涂层的要求。针对掺氢燃气轮机对热防护涂层的需求,提出了抗高温腐蚀的新型环境/热障涂层(environmental/thermal barrier coating... 【目的】随着国家“双碳”战略(碳达峰、碳中和)的实施,现有的热防护涂层结构难以满足未来燃气轮机热防护涂层的要求。针对掺氢燃气轮机对热防护涂层的需求,提出了抗高温腐蚀的新型环境/热障涂层(environmental/thermal barrier coatings,E/TBC)结构的概念。【方法】从热防护涂层材料和涂层结构的角度,简要回顾及分析了热障涂层(thermal barrier coatings, TBC)、环境障涂层(environmental barrier coatings, EBC)、热障/环境障涂层(thermal/environmental barrier coatings,T/EBC)和热环境障涂层(thermal environmental barrier coatings,TEBC)的发展历程和研究现状,进而考察上述涂层结构与掺氢燃气轮机对热防护涂层需求之间的差距。【结果】将EBC的功能叠加到目前掺氢燃气轮机的热防护涂层上,从而在高温合金基体上形成一种抗高温腐蚀的新型E/TBC结构具有合理性。【结论】通过初步试验,证明E/TBC结构适用于掺氢燃气轮机抗高温水氧腐蚀的热防护涂层要求,指出应大力开展这种新型E/TBC热防护涂层的理论和应用研究。 展开更多
关键词 燃气轮机 氢燃料 掺氢燃气轮机 热障涂层 腐蚀防护 结构设计
下载PDF
基于CEL法熔滴冲击基板的TPF/FSI数值模拟
16
作者 陈丽华 张梦娇 +1 位作者 闪陆通 李浩群 《北京工业大学学报》 CAS CSCD 北大核心 2024年第5期523-533,共11页
航空发动机和燃气轮机的高温工作环境会对其热端金属部件造成不可逆损伤,热障涂层(thermal barrier coatings,TBCs)能够承受高温和高压的侵蚀性环境,从而保证金属部件使用的安全性及可靠性。以空心Y_(2)O_(3)-ZrO_(2)(yttrium-stabilize... 航空发动机和燃气轮机的高温工作环境会对其热端金属部件造成不可逆损伤,热障涂层(thermal barrier coatings,TBCs)能够承受高温和高压的侵蚀性环境,从而保证金属部件使用的安全性及可靠性。以空心Y_(2)O_(3)-ZrO_(2)(yttrium-stabilized zirconia,YSZ)粒子在等离子焰流中的2种形态,即全熔熔滴和空心熔滴为研究对象对其冲击铺展过程进行了模拟。基于ABAQUS/EXPLICIT耦合欧拉-拉格朗日(coupled Eulerian-Lagrangian,CEL)有限元方法,首先针对ABAQUS缺少相变模型,导致使用CEL方法计算熔滴铺展形貌失真的问题,给出了适用的动力黏度随温度变化的经验公式。此外,考虑周围空气对熔滴铺展过程的影响,提出了“两相流(two phase flow,TPF)/流-固耦合(fluid-structure-interaction,FSI)”2.5D模型,对熔滴冲击基板凝固成型及空气卷入的过程进行了模拟,并揭示了2种熔滴铺展形貌存在较大差异的机理,对制备隔热性能更优的热障涂层具有指导意义。 展开更多
关键词 热障涂层 CEL法 TPF/FSI模型 动力黏度经验公式 空心熔滴 孔隙率
下载PDF
锆基陶瓷热障涂层的腐蚀研究进展
17
作者 韩旭 耿洪滨 +2 位作者 王铀 李仰 张晓东 《航空制造技术》 CSCD 北大核心 2024年第4期89-103,共15页
近年来随着航空与航海工业的迅速发展,具有耐高温、长寿命、耐腐蚀等优势的发动机叶片成为开发新一代航空发动机和涡轮发动机的重要一环。热障涂层(TBCs)作为常用的热防护技术,一方面可为发动机叶片部分金属基底提供隔热保护,使其免受... 近年来随着航空与航海工业的迅速发展,具有耐高温、长寿命、耐腐蚀等优势的发动机叶片成为开发新一代航空发动机和涡轮发动机的重要一环。热障涂层(TBCs)作为常用的热防护技术,一方面可为发动机叶片部分金属基底提供隔热保护,使其免受高温气体的影响;但另一方面,更高的发动机工作温度使得叶片及其表面TBCs遭受严重的环境沉积物腐蚀,造成过早失效,腐蚀类型主要有热腐蚀、CMAS腐蚀、熔盐腐蚀等。腐蚀已成为限制TBCs工作温度和服役寿命的难题,抗腐蚀防护是目前TBCs领域研究的重点。本文首先简述了以氧化钇稳定氧化锆陶瓷(YSZ)为主的热障涂层材料的主要特性,再简述了TBCs的不同腐蚀的反应机理,重点从涂层的微观结构设计、梯度涂层的设计、涂层成分改性及掺杂改性等方面与涂层腐蚀过程之间的影响关系出发,阐述了TBCs改性方法与涂层腐蚀的特点。提出未来涂层改进与防护的几种方法,最后对TBCs的腐蚀防护发展方向进行了展望。 展开更多
关键词 热障涂层(tbcs) 氧化钇稳定氧化锆陶瓷(YSZ) 腐蚀失效 热生长氧化物(TGO) 改性
下载PDF
稀土硅铁对TBCs梯度热障涂层组织与性能影响的研究 被引量:3
18
作者 邓畅光 邝子奇 《中国腐蚀与防护学报》 CAS CSCD 2002年第3期176-179,共4页
通过低压等离子喷涂技术在Ni基合金表面制备了Y2 O3 -CeO2 -TZP/NiCoCrAlY梯度热障涂层 ,采用光学显微镜、X射线衍射仪、扫描电镜、电子探针等方法研究了稀土硅铁对Y2 O3 -CeO2 -TZP/NiCoCrAlY梯度热障涂层的组织和性能的影响 .结果表... 通过低压等离子喷涂技术在Ni基合金表面制备了Y2 O3 -CeO2 -TZP/NiCoCrAlY梯度热障涂层 ,采用光学显微镜、X射线衍射仪、扫描电镜、电子探针等方法研究了稀土硅铁对Y2 O3 -CeO2 -TZP/NiCoCrAlY梯度热障涂层的组织和性能的影响 .结果表明 ,在涂层中加入适量的稀土硅铁 ,能改善涂层的组织结构 。 展开更多
关键词 梯度热障涂层 抗热震性能 抗氧化性能 稀土硅铁
下载PDF
Tailoring sintering-resistant thermal barrier coatings by considering critical healing width of two-dimensional interlamellar pores
19
作者 Guang-Rong Li Tao Liu +2 位作者 Xiao-Tao Luo Guan-Jun Yang Chang-Jiu Li 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第7期1317-1330,共14页
Large degradation in thermal insulation and strain tolerance is a main headache and a primary cause of the failure for plasma-sprayed thermal barrier coatings(TBCs)during service.One mechanism behind such degradation ... Large degradation in thermal insulation and strain tolerance is a main headache and a primary cause of the failure for plasma-sprayed thermal barrier coatings(TBCs)during service.One mechanism behind such degradation is the healing of interlamellar pores formed by multiple connections between edges of a pore,which significantly speeds up healing during thermal exposure.The objective of this study is to obtain sintering-resistant TBCs by tailoring the width of interlamellar pores to avoid multiple connections.Firstly,the mechanism responsible for the multiple connections was revealed.The splat surfaces before and after thermal treatments were characterized via an atomic force microscope(AFM).The roughening of the pore surface occurs during thermal exposure,along with the grain growth inside the splats.Consequently,the local surface height increases,which causes multiple connections and healing of the interlamellar pores.Secondly,critical widths of the interlamellar pores for avoiding the multiple connections during thermal exposure are established by correlating the extent of surface roughening with the growth of individual grains.The height increase of the splat surface and the growth of the grain size(D)were found to increase with the exposure temperature and duration.A relationship linking the height increase and the growth of the grain size induced by thermal exposure in plasma-sprayed ceramic splats was obtained.Finally,composite TBCs were prepared to form wide interlamellar pores in the coatings.Using this design,the increases in the thermal conductivity(λ)and the elastic modulus(E)can be prevented to a large extent.Thus,sintering-resistant TBCs that maintain high thermal insulation and strain tolerance,even afer long thermal exposure,can be created. 展开更多
关键词 thermal barrier coatings(tbcs) air plasma spraying(APS) multiple connections grain growth sintering-resistant structure
原文传递
Influence of surface modification on isothermal oxidation behavior of EB-PVD NiA1 coating 被引量:1
20
作者 李合非 陶淑风 +2 位作者 江阔 A. HESNAWI 宫声凯 《中国有色金属学会会刊:英文版》 CSCD 2006年第A02期20-25,共6页
关键词 表面改性 EB-PVD涂层 NIAL涂层 热障涂层 等温氧化行为 NIAL金属间化合物
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部