In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data...In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data may contain some sensitive information,it is also of great significance to study privacy-preserving machine learning algorithms.This paper focuses on the performance of the differentially private stochastic gradient descent(SGD)algorithm based on random features.To begin,the algorithm maps the original data into a lowdimensional space,thereby avoiding the traditional kernel method for large-scale data storage requirement.Subsequently,the algorithm iteratively optimizes parameters using the stochastic gradient descent approach.Lastly,the output perturbation mechanism is employed to introduce random noise,ensuring algorithmic privacy.We prove that the proposed algorithm satisfies the differential privacy while achieving fast convergence rates under some mild conditions.展开更多
To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machine...To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.展开更多
This paper presents a method for lane boundaries detection which is not affected by the shadows, illumination and un-even road conditions. This method is based upon processing grayscale images using local gradient fea...This paper presents a method for lane boundaries detection which is not affected by the shadows, illumination and un-even road conditions. This method is based upon processing grayscale images using local gradient features, characteris-tic spectrum of lanes, and linear prediction. Firstly, points on the adjacent right and left lane are recognized using the local gradient descriptors. A simple linear prediction model is deployed to predict the direction of lane markers. The contribution of this paper is the use of vertical gradient image without converting into binary image(using suitable thre-shold), and introduction of characteristic lane gradient spectrum within the local window to locate the preciselane marking points along the horizontal scan line over the image. Experimental results show that this method has greater tolerance to shadows and low illumination conditions. A comparison is drawn between this method and recent methods reported in the literature.展开更多
Alzheimer’s disease is a non-reversible,non-curable,and progressive neurological disorder that induces the shrinkage and death of a specific neuronal population associated with memory formation and retention.It is a ...Alzheimer’s disease is a non-reversible,non-curable,and progressive neurological disorder that induces the shrinkage and death of a specific neuronal population associated with memory formation and retention.It is a frequently occurring mental illness that occurs in about 60%–80%of cases of dementia.It is usually observed between people in the age group of 60 years and above.Depending upon the severity of symptoms the patients can be categorized in Cognitive Normal(CN),Mild Cognitive Impairment(MCI)and Alzheimer’s Disease(AD).Alzheimer’s disease is the last phase of the disease where the brain is severely damaged,and the patients are not able to live on their own.Radiomics is an approach to extracting a huge number of features from medical images with the help of data characterization algorithms.Here,105 number of radiomic features are extracted and used to predict the alzhimer’s.This paper uses Support Vector Machine,K-Nearest Neighbour,Gaussian Naïve Bayes,eXtreme Gradient Boosting(XGBoost)and Random Forest to predict Alzheimer’s disease.The proposed random forest-based approach with the Radiomic features achieved an accuracy of 85%.This proposed approach also achieved 88%accuracy,88%recall,88%precision and 87%F1-score for AD vs.CN,it achieved 72%accuracy,73%recall,72%precisionand 71%F1-score for AD vs.MCI and it achieved 69%accuracy,69%recall,68%precision and 69%F1-score for MCI vs.CN.The comparative analysis shows that the proposed approach performs better than others approaches.展开更多
基金supported by Zhejiang Provincial Natural Science Foundation of China(LR20A010001)National Natural Science Foundation of China(12271473 and U21A20426)。
文摘In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data may contain some sensitive information,it is also of great significance to study privacy-preserving machine learning algorithms.This paper focuses on the performance of the differentially private stochastic gradient descent(SGD)algorithm based on random features.To begin,the algorithm maps the original data into a lowdimensional space,thereby avoiding the traditional kernel method for large-scale data storage requirement.Subsequently,the algorithm iteratively optimizes parameters using the stochastic gradient descent approach.Lastly,the output perturbation mechanism is employed to introduce random noise,ensuring algorithmic privacy.We prove that the proposed algorithm satisfies the differential privacy while achieving fast convergence rates under some mild conditions.
基金National Natural Science Foundation of China(No.519705449)。
文摘To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.
文摘This paper presents a method for lane boundaries detection which is not affected by the shadows, illumination and un-even road conditions. This method is based upon processing grayscale images using local gradient features, characteris-tic spectrum of lanes, and linear prediction. Firstly, points on the adjacent right and left lane are recognized using the local gradient descriptors. A simple linear prediction model is deployed to predict the direction of lane markers. The contribution of this paper is the use of vertical gradient image without converting into binary image(using suitable thre-shold), and introduction of characteristic lane gradient spectrum within the local window to locate the preciselane marking points along the horizontal scan line over the image. Experimental results show that this method has greater tolerance to shadows and low illumination conditions. A comparison is drawn between this method and recent methods reported in the literature.
文摘Alzheimer’s disease is a non-reversible,non-curable,and progressive neurological disorder that induces the shrinkage and death of a specific neuronal population associated with memory formation and retention.It is a frequently occurring mental illness that occurs in about 60%–80%of cases of dementia.It is usually observed between people in the age group of 60 years and above.Depending upon the severity of symptoms the patients can be categorized in Cognitive Normal(CN),Mild Cognitive Impairment(MCI)and Alzheimer’s Disease(AD).Alzheimer’s disease is the last phase of the disease where the brain is severely damaged,and the patients are not able to live on their own.Radiomics is an approach to extracting a huge number of features from medical images with the help of data characterization algorithms.Here,105 number of radiomic features are extracted and used to predict the alzhimer’s.This paper uses Support Vector Machine,K-Nearest Neighbour,Gaussian Naïve Bayes,eXtreme Gradient Boosting(XGBoost)and Random Forest to predict Alzheimer’s disease.The proposed random forest-based approach with the Radiomic features achieved an accuracy of 85%.This proposed approach also achieved 88%accuracy,88%recall,88%precision and 87%F1-score for AD vs.CN,it achieved 72%accuracy,73%recall,72%precisionand 71%F1-score for AD vs.MCI and it achieved 69%accuracy,69%recall,68%precision and 69%F1-score for MCI vs.CN.The comparative analysis shows that the proposed approach performs better than others approaches.