This paper explores a highly accurate identification modeling approach for the ship maneuvering motion with fullscale trial. A multi-innovation gradient iterative(MIGI) approach is proposed to optimize the distance me...This paper explores a highly accurate identification modeling approach for the ship maneuvering motion with fullscale trial. A multi-innovation gradient iterative(MIGI) approach is proposed to optimize the distance metric of locally weighted learning(LWL), and a novel non-parametric modeling technique is developed for a nonlinear ship maneuvering system. This proposed method’s advantages are as follows: first, it can avoid the unmodeled dynamics and multicollinearity inherent to the conventional parametric model; second, it eliminates the over-learning or underlearning and obtains the optimal distance metric; and third, the MIGI is not sensitive to the initial parameter value and requires less time during the training phase. These advantages result in a highly accurate mathematical modeling technique that can be conveniently implemented in applications. To verify the characteristics of this mathematical model, two examples are used as the model platforms to study the ship maneuvering.展开更多
Arc grounding faults occur frequently in the power grid with small resistance grounding neutral points.The existing arc fault identification technology only uses the fault line signal characteristics to set the identi...Arc grounding faults occur frequently in the power grid with small resistance grounding neutral points.The existing arc fault identification technology only uses the fault line signal characteristics to set the identification index,which leads to detection failure when the arc zero-off characteristic is short.To solve this problem,this paper presents an arc fault identification method by utilizing integrated signal characteristics of both the fault line and sound lines.Firstly,the waveform characteristics of the fault line and sound lines under an arc grounding fault are studied.After that,the convex hull,gradient product,and correlation coefficient index are used as the basic characteristic parameters to establish fault identification criteria.Then,the logistic regression algorithm is employed to deal with the reference samples,establish the machine discrimination model,and realize the discrimination of fault types.Finally,simulation test results and experimental results verify the accuracy of the proposed method.The comparison analysis shows that the proposed method has higher recognition accuracy,especially when the arc dissipation power is smaller than 2×10^(3) W,the zero-off period is not obvious.In conclusion,the proposed method expands the arc fault identification theory.展开更多
A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective....A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.展开更多
The eXtreme gradient boosting(XGBoost)algorithm is used to identify abnormal users.Firstly,the raw data were cleaned.Then user power characteristics were extracted from different aspects.Finally,the XGBoost classifier...The eXtreme gradient boosting(XGBoost)algorithm is used to identify abnormal users.Firstly,the raw data were cleaned.Then user power characteristics were extracted from different aspects.Finally,the XGBoost classifier was used to identify the abnormal users respectively in the balanced sample set and the unbalanced sample set.In contrast,under the same characteristics,the k-nearest neighbor(KNN)classifier,back-propagation(BP)neural network classifier and random forest classifier were used to identify the abnormal users in the two samples.The experimental results show that the XGBoost classifier has higher recognition rate and faster running speed.Especially in the imbalanced data sets,the performance improvement is obvious.展开更多
This paper proposes an adaptive parameter identification method for breaking chaotic shift key communication from the transmitted signal in public channel. The sensitive dependence property of chaos on parameter misma...This paper proposes an adaptive parameter identification method for breaking chaotic shift key communication from the transmitted signal in public channel. The sensitive dependence property of chaos on parameter mismatch is used for chaos adaptive synchronization and parameter identification. An index function about the synchronization error is defined and conjugate gradient method is used to minimize the index function and to search the transmitter's parameter (key). By using proposed method, secure key is recovered from transmitted signal generated by low dimensional chaos and hyper chaos switching communication. Multi-parameters can also be identified from the transmitted signal with noise.展开更多
Plant diseases have become a challenging threat in the agricultural field.Various learning approaches for plant disease detection and classification have been adopted to detect and diagnose these diseases early.Howeve...Plant diseases have become a challenging threat in the agricultural field.Various learning approaches for plant disease detection and classification have been adopted to detect and diagnose these diseases early.However,deep learning entails extensive data for training,and it may be challenging to collect plant datasets.Even though plant datasets can be collected,they may be uneven in quantity.As a result,the problem of classification model overfitting arises.This study targets this issue and proposes an auxiliary classifier GAN(small-ACGAN)model based on a small number of datasets to extend the available data.First,after comparing various attention mechanisms,this paper chose to add the lightweight Coordinate Attention(CA)to the generator module of Auxiliary Classifier GANs(ACGAN)to improve the image quality.Then,a gradient penalty mechanism was added to the loss function to improve the training stability of the model.Experiments show that the proposed method can best improve the recognition accuracy of the classifier with the doubled dataset.On AlexNet,the accuracy was increased by 11.2%.In addition,small-ACGAN outperformed the other three GANs used in the experiment.Moreover,the experimental accuracy,precision,recall,and F1 scores of the five convolutional neural network(CNN)classifiers on the enhanced dataset improved by an average of 3.74%,3.48%,3.74%,and 3.80%compared to the original dataset.Furthermore,the accuracy of MobileNetV3 reached 97.9%,which fully demonstrated the feasibility of this approach.The general experimental results indicate that the method proposed in this paper provides a new dataset expansion method for effectively improving the identification accuracy and can play an essential role in expanding the dataset of the sparse number of plant diseases.展开更多
Attitude identification method for unmanned helicopter based on fuzzy model at hovering is presented. The dynamical attitude model is considered as basis for attitude control and it is very complex. To reduce the comp...Attitude identification method for unmanned helicopter based on fuzzy model at hovering is presented. The dynamical attitude model is considered as basis for attitude control and it is very complex. To reduce the complexity of model, nonlinear model of unmanned helicopter with unknown parameters are to be determined by fuzzy system first and then derivative based gradient method is used to identify unknown parameters of model. Gradient method is used due to ability that fuzzy system is not necessarily to be linear in parameters, therefore all fuzzy sets for input and output can be adjusted. The validity of the proposed model was verified using experimental data obtained by the commercially available flight simulator X-Plane. The simulation results showed high accuracy of the modeling method and attitude dynamics data matched well with experimental data.展开更多
Biometric techniques require critical operations of digital processing for identification of individuals. In this context, this paper aims to develop a system for automatic processing of fingerprint identification by ...Biometric techniques require critical operations of digital processing for identification of individuals. In this context, this paper aims to develop a system for automatic processing of fingerprint identification by their minutiae using Artificial Neural Networks (ANN), which reveals to be highly effective. The ANN method implemented is a based on Multi-Layer Perceptron (MLP) model, which utilizes the algorithm of retro-propagation of gradient during the learning process. In such a process, the mean square error generated represents the specific parameter for the identification phase by comparing a fingerprint taken from a crime scene with those of a reference database.展开更多
In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural n...In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural network approach seems to be more accurate. PCA consists in projecting the spectrum of a gas collected from a remote sensing system in, firstly, a three-dimensional space, then in a two-dimensional one using a model of Multi-Layer Perceptron based neural network. It adopts during the learning process, the back propagation algorithm of the gradient, in which the mean square error output is continuously calculated and compared to the input until it reaches a minimal threshold value. This aims to correct the synaptic weights of the network. So, the Artificial Neural Network (ANN) tends to be more efficient in the classification process. This paper emphasizes the contribution of the ANN method in the spectral data processing, classification and identification and in addition, its fast convergence during the back propagation of the gradient.展开更多
To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the accele...To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.展开更多
We consider the sparse identification of multivariate ARX systems, i.e., to recover the zero elements of the unknown parameter matrix. We propose a two-step algorithm, where in the first step the stochastic gradient (...We consider the sparse identification of multivariate ARX systems, i.e., to recover the zero elements of the unknown parameter matrix. We propose a two-step algorithm, where in the first step the stochastic gradient (SG) algorithm is applied to obtain initial estimates of the unknown parameter matrix and in the second step an optimization criterion is introduced for the sparse identification of multivariate ARX systems. Under mild conditions, we prove that by minimizing the criterion function, the zero elements of the unknown parameter matrix can be recovered with a finite number of observations. The performance of the algorithm is testified through a simulation example.展开更多
基金financially supported in part by the National High Technology Research and Development Program of China(863Program,Grant No.2015AA016404)the National Natural Science Foundation of China(Grant Nos.51109020,51179019 and 51779029)the Fundamental Research Program for Key Laboratory of the Education Department of Liaoning Province(Grant No.LZ2015006)
文摘This paper explores a highly accurate identification modeling approach for the ship maneuvering motion with fullscale trial. A multi-innovation gradient iterative(MIGI) approach is proposed to optimize the distance metric of locally weighted learning(LWL), and a novel non-parametric modeling technique is developed for a nonlinear ship maneuvering system. This proposed method’s advantages are as follows: first, it can avoid the unmodeled dynamics and multicollinearity inherent to the conventional parametric model; second, it eliminates the over-learning or underlearning and obtains the optimal distance metric; and third, the MIGI is not sensitive to the initial parameter value and requires less time during the training phase. These advantages result in a highly accurate mathematical modeling technique that can be conveniently implemented in applications. To verify the characteristics of this mathematical model, two examples are used as the model platforms to study the ship maneuvering.
基金This work was supported in part by the Natural Science Foundation of Henan Province,and the specific grant number is 232300420301。
文摘Arc grounding faults occur frequently in the power grid with small resistance grounding neutral points.The existing arc fault identification technology only uses the fault line signal characteristics to set the identification index,which leads to detection failure when the arc zero-off characteristic is short.To solve this problem,this paper presents an arc fault identification method by utilizing integrated signal characteristics of both the fault line and sound lines.Firstly,the waveform characteristics of the fault line and sound lines under an arc grounding fault are studied.After that,the convex hull,gradient product,and correlation coefficient index are used as the basic characteristic parameters to establish fault identification criteria.Then,the logistic regression algorithm is employed to deal with the reference samples,establish the machine discrimination model,and realize the discrimination of fault types.Finally,simulation test results and experimental results verify the accuracy of the proposed method.The comparison analysis shows that the proposed method has higher recognition accuracy,especially when the arc dissipation power is smaller than 2×10^(3) W,the zero-off period is not obvious.In conclusion,the proposed method expands the arc fault identification theory.
基金financially supported by the National High Technology Research and Development Program of China (863 Program, 2013AA102402)the 521 Talent Project of Zhejiang Sci-Tech University, Chinathe Key Research and Development Program of Zhejiang Province, China (2015C03023)
文摘A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.
基金National Natural Science Foundation of China(No.61262044)
文摘The eXtreme gradient boosting(XGBoost)algorithm is used to identify abnormal users.Firstly,the raw data were cleaned.Then user power characteristics were extracted from different aspects.Finally,the XGBoost classifier was used to identify the abnormal users respectively in the balanced sample set and the unbalanced sample set.In contrast,under the same characteristics,the k-nearest neighbor(KNN)classifier,back-propagation(BP)neural network classifier and random forest classifier were used to identify the abnormal users in the two samples.The experimental results show that the XGBoost classifier has higher recognition rate and faster running speed.Especially in the imbalanced data sets,the performance improvement is obvious.
基金Project supported by the China Postdoctoral Science Foundation (Grant No 20060390318)Natural Science Foundation of Shaanxi Province (Grant No 2007F017)Fok Ying Tong Education Foundation
文摘This paper proposes an adaptive parameter identification method for breaking chaotic shift key communication from the transmitted signal in public channel. The sensitive dependence property of chaos on parameter mismatch is used for chaos adaptive synchronization and parameter identification. An index function about the synchronization error is defined and conjugate gradient method is used to minimize the index function and to search the transmitter's parameter (key). By using proposed method, secure key is recovered from transmitted signal generated by low dimensional chaos and hyper chaos switching communication. Multi-parameters can also be identified from the transmitted signal with noise.
文摘Plant diseases have become a challenging threat in the agricultural field.Various learning approaches for plant disease detection and classification have been adopted to detect and diagnose these diseases early.However,deep learning entails extensive data for training,and it may be challenging to collect plant datasets.Even though plant datasets can be collected,they may be uneven in quantity.As a result,the problem of classification model overfitting arises.This study targets this issue and proposes an auxiliary classifier GAN(small-ACGAN)model based on a small number of datasets to extend the available data.First,after comparing various attention mechanisms,this paper chose to add the lightweight Coordinate Attention(CA)to the generator module of Auxiliary Classifier GANs(ACGAN)to improve the image quality.Then,a gradient penalty mechanism was added to the loss function to improve the training stability of the model.Experiments show that the proposed method can best improve the recognition accuracy of the classifier with the doubled dataset.On AlexNet,the accuracy was increased by 11.2%.In addition,small-ACGAN outperformed the other three GANs used in the experiment.Moreover,the experimental accuracy,precision,recall,and F1 scores of the five convolutional neural network(CNN)classifiers on the enhanced dataset improved by an average of 3.74%,3.48%,3.74%,and 3.80%compared to the original dataset.Furthermore,the accuracy of MobileNetV3 reached 97.9%,which fully demonstrated the feasibility of this approach.The general experimental results indicate that the method proposed in this paper provides a new dataset expansion method for effectively improving the identification accuracy and can play an essential role in expanding the dataset of the sparse number of plant diseases.
文摘Attitude identification method for unmanned helicopter based on fuzzy model at hovering is presented. The dynamical attitude model is considered as basis for attitude control and it is very complex. To reduce the complexity of model, nonlinear model of unmanned helicopter with unknown parameters are to be determined by fuzzy system first and then derivative based gradient method is used to identify unknown parameters of model. Gradient method is used due to ability that fuzzy system is not necessarily to be linear in parameters, therefore all fuzzy sets for input and output can be adjusted. The validity of the proposed model was verified using experimental data obtained by the commercially available flight simulator X-Plane. The simulation results showed high accuracy of the modeling method and attitude dynamics data matched well with experimental data.
文摘Biometric techniques require critical operations of digital processing for identification of individuals. In this context, this paper aims to develop a system for automatic processing of fingerprint identification by their minutiae using Artificial Neural Networks (ANN), which reveals to be highly effective. The ANN method implemented is a based on Multi-Layer Perceptron (MLP) model, which utilizes the algorithm of retro-propagation of gradient during the learning process. In such a process, the mean square error generated represents the specific parameter for the identification phase by comparing a fingerprint taken from a crime scene with those of a reference database.
文摘In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural network approach seems to be more accurate. PCA consists in projecting the spectrum of a gas collected from a remote sensing system in, firstly, a three-dimensional space, then in a two-dimensional one using a model of Multi-Layer Perceptron based neural network. It adopts during the learning process, the back propagation algorithm of the gradient, in which the mean square error output is continuously calculated and compared to the input until it reaches a minimal threshold value. This aims to correct the synaptic weights of the network. So, the Artificial Neural Network (ANN) tends to be more efficient in the classification process. This paper emphasizes the contribution of the ANN method in the spectral data processing, classification and identification and in addition, its fast convergence during the back propagation of the gradient.
基金The National Natural Science Foundation of China(No.52361165658,52378318,52078459).
文摘To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.
文摘We consider the sparse identification of multivariate ARX systems, i.e., to recover the zero elements of the unknown parameter matrix. We propose a two-step algorithm, where in the first step the stochastic gradient (SG) algorithm is applied to obtain initial estimates of the unknown parameter matrix and in the second step an optimization criterion is introduced for the sparse identification of multivariate ARX systems. Under mild conditions, we prove that by minimizing the criterion function, the zero elements of the unknown parameter matrix can be recovered with a finite number of observations. The performance of the algorithm is testified through a simulation example.