期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multi-Robot Privacy-Preserving Algorithms Based on Federated Learning:A Review 被引量:1
1
作者 Jiansheng Peng Jinsong Guo +3 位作者 Fengbo Bao Chengjun Yang Yong Xu Yong Qin 《Computers, Materials & Continua》 SCIE EI 2023年第12期2971-2994,共24页
The robotics industry has seen rapid development in recent years due to the Corona Virus Disease 2019.With the development of sensors and smart devices,factories and enterprises have accumulated a large amount of data... The robotics industry has seen rapid development in recent years due to the Corona Virus Disease 2019.With the development of sensors and smart devices,factories and enterprises have accumulated a large amount of data in their daily production,which creates extremely favorable conditions for robots to perform machine learning.However,in recent years,people’s awareness of data privacy has been increasing,leading to the inability to circulate data between different enterprises,resulting in the emergence of data silos.The emergence of federated learning provides a feasible solution to this problem,and the combination of federated learning and multi-robot systems can break down data silos and improve the overall performance of robots.However,as scholars have studied more deeply,they found that federated learning has very limited privacy protection.Therefore,how to protect data privacy from infringement remains an important issue.In this paper,we first give a brief introduction to the current development of multi-robot and federated learning;second,we review three aspects of privacy protection methods commonly used,privacy protection methods for multi-robot,and Other Problems Faced by Multi-robot Systems,focusing on method comparisons and challenges;and finally draw conclusions and predict possible future research directions. 展开更多
关键词 Federated learning MULTI-ROBOT privacy protection gradient leakage attacks
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部