Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and mai...Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges.展开更多
The compression modulus(Es)is one of the most significant soil parameters that affects the compressive deformation of geotechnical systems,such as foundations.However,it is difficult and sometime costly to obtain this...The compression modulus(Es)is one of the most significant soil parameters that affects the compressive deformation of geotechnical systems,such as foundations.However,it is difficult and sometime costly to obtain this parameter in engineering practice.In this study,we aimed to develop a non-parametric ensemble artificial intelligence(AI)approach to calculate the Es of soft clay in contrast to the traditional regression models proposed in previous studies.A gradient boosted regression tree(GBRT)algorithm was used to discern the non-linear pattern between input variables and the target response,while a genetic algorithm(GA)was adopted for tuning the GBRT model's hyper-parameters.The model was tested through 10-fold cross validation.A dataset of 221 samples from 65 engineering survey reports from Shanghai infrastructure projects was constructed to evaluate the accuracy of the new model5 s predictions.The mean squared error and correlation coefficient of the optimum GBRT model applied to the testing set were 0.13 and 0.91,respectively,indicating that the proposed machine learning(ML)model has great potential to improve the prediction of Es for soft clay.A comparison of the performance of empirical formulas and the proposed ML method for predicting foundation settlement indicated the rationality of the proposed ML model and its applicability to the compressive deformation of geotechnical systems.This model,however,cannot be directly applied to the prediction of Es in other sites due to its site specificity.This problem can be solved by retraining the model using local data.This study provides a useful reference for future multi-parameter prediction of soil behavior.展开更多
When travelling,people are accustomed to taking and uploading photos on social media websites,which has led to the accumulation of huge numbers of geotagged photos.Combined with multisource information(e.g.weather,tra...When travelling,people are accustomed to taking and uploading photos on social media websites,which has led to the accumulation of huge numbers of geotagged photos.Combined with multisource information(e.g.weather,transportation,or textual information),these geotagged photos could help us in constructing user preference profiles at a high level of detail.Therefore,using these geotagged photos,we built a personalised recommendation system to provide attraction recommendations that match a user’s preferences.Specifically,we retrieved a geotagged photo collection from the public API for Flickr(Flickr.com)and fetched a large amount of other contextual information to rebuild a user’s travel history.We then created a model-based recommendation method with a two-stage architecture that consists of candidate generation(the matching process)and candidate ranking.In the matching process,we used a support vector machine model that was modified for multiclass classification to generate the candidate list.In addition,we used a gradient boosting regression tree to score each candidate and rerank the list.Finally,we evaluated our recommendation results with respect to accuracy and ranking ability.Compared with widely used memory-based methods,our proposed method performs significantly better in the cold-start situation and when mining‘long-tail’data.展开更多
基金Project(2017G006-N)supported by the Project of Science and Technology Research and Development Program of China Railway Corporation。
文摘Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges.
基金the National Natural Science Foundation of China(Nos.51608380 and 51538009)the Key Innovation Team Program of the Innovation Talents Promotion Plan by Ministry of Science and Technology of China(No.2016RA4059)the Specific Consultant Research Project of Shanghai Tunnel Engineering Company Ltd.(No.STEC/KJB/XMGL/0130),China。
文摘The compression modulus(Es)is one of the most significant soil parameters that affects the compressive deformation of geotechnical systems,such as foundations.However,it is difficult and sometime costly to obtain this parameter in engineering practice.In this study,we aimed to develop a non-parametric ensemble artificial intelligence(AI)approach to calculate the Es of soft clay in contrast to the traditional regression models proposed in previous studies.A gradient boosted regression tree(GBRT)algorithm was used to discern the non-linear pattern between input variables and the target response,while a genetic algorithm(GA)was adopted for tuning the GBRT model's hyper-parameters.The model was tested through 10-fold cross validation.A dataset of 221 samples from 65 engineering survey reports from Shanghai infrastructure projects was constructed to evaluate the accuracy of the new model5 s predictions.The mean squared error and correlation coefficient of the optimum GBRT model applied to the testing set were 0.13 and 0.91,respectively,indicating that the proposed machine learning(ML)model has great potential to improve the prediction of Es for soft clay.A comparison of the performance of empirical formulas and the proposed ML method for predicting foundation settlement indicated the rationality of the proposed ML model and its applicability to the compressive deformation of geotechnical systems.This model,however,cannot be directly applied to the prediction of Es in other sites due to its site specificity.This problem can be solved by retraining the model using local data.This study provides a useful reference for future multi-parameter prediction of soil behavior.
基金supported by grants from the National Key Research and Development Program of China[grant number 2017YFB0503602]the National Natural Science Foundation of China[grant number 41771425],[grant number 41625003],[grant number 41501162]the Beijing Philosophy and Social Science Foundation[grant number 17JDGLB002].
文摘When travelling,people are accustomed to taking and uploading photos on social media websites,which has led to the accumulation of huge numbers of geotagged photos.Combined with multisource information(e.g.weather,transportation,or textual information),these geotagged photos could help us in constructing user preference profiles at a high level of detail.Therefore,using these geotagged photos,we built a personalised recommendation system to provide attraction recommendations that match a user’s preferences.Specifically,we retrieved a geotagged photo collection from the public API for Flickr(Flickr.com)and fetched a large amount of other contextual information to rebuild a user’s travel history.We then created a model-based recommendation method with a two-stage architecture that consists of candidate generation(the matching process)and candidate ranking.In the matching process,we used a support vector machine model that was modified for multiclass classification to generate the candidate list.In addition,we used a gradient boosting regression tree to score each candidate and rerank the list.Finally,we evaluated our recommendation results with respect to accuracy and ranking ability.Compared with widely used memory-based methods,our proposed method performs significantly better in the cold-start situation and when mining‘long-tail’data.