A subspace projected conjugate gradient method is proposed for solving large bound constrained quadratic programming. The conjugate gradient method is used to update the variables with indices outside of the active se...A subspace projected conjugate gradient method is proposed for solving large bound constrained quadratic programming. The conjugate gradient method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At every iterative level, the search direction consists of two parts, one of which is a subspace trumcated Newton direction, another is a modified gradient direction. With the projected search the algorithm is suitable to large problems. The convergence of the method is proved and same numerical tests with dimensions ranging from 5000 to 20000 are given.展开更多
In this paper, a projected gradient trust region algorithm for solving nonlinear equality systems with convex constraints is considered. The global convergence results are developed in a very general setting of comput...In this paper, a projected gradient trust region algorithm for solving nonlinear equality systems with convex constraints is considered. The global convergence results are developed in a very general setting of computing trial directions by this method combining with the line search technique. Close to the solution set this method is locally Q-superlinearly convergent under an error bound assumption which is much weaker than the standard nonsingularity condition.展开更多
In conjugate gradient method, it is well known that the recursively computed residual differs from true one as the iteration proceeds in finite arithmetic. Some work have been devoted to analyze this behavior and to e...In conjugate gradient method, it is well known that the recursively computed residual differs from true one as the iteration proceeds in finite arithmetic. Some work have been devoted to analyze this behavior and to evaluate the lower and the upper bounds of the difference. This paper focuses on the behavior of these two kinds of residuals, especially their lower bounds caused by the loss of trailing digit, respectively.展开更多
基金This research was supported by Chinese NNSF grant and NSF grant of Jiangsu Province
文摘A subspace projected conjugate gradient method is proposed for solving large bound constrained quadratic programming. The conjugate gradient method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At every iterative level, the search direction consists of two parts, one of which is a subspace trumcated Newton direction, another is a modified gradient direction. With the projected search the algorithm is suitable to large problems. The convergence of the method is proved and same numerical tests with dimensions ranging from 5000 to 20000 are given.
基金Supported by the National Natural Science Foundation of China (10871130)the Research Fund for the Doctoral Program of Higher Education of China (20093127110005)the Scientific Computing Key Laboratory of Shanghai Universities
文摘In this paper, a projected gradient trust region algorithm for solving nonlinear equality systems with convex constraints is considered. The global convergence results are developed in a very general setting of computing trial directions by this method combining with the line search technique. Close to the solution set this method is locally Q-superlinearly convergent under an error bound assumption which is much weaker than the standard nonsingularity condition.
文摘In conjugate gradient method, it is well known that the recursively computed residual differs from true one as the iteration proceeds in finite arithmetic. Some work have been devoted to analyze this behavior and to evaluate the lower and the upper bounds of the difference. This paper focuses on the behavior of these two kinds of residuals, especially their lower bounds caused by the loss of trailing digit, respectively.