To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machine...To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.展开更多
A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective....A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.展开更多
Content aware image resizing(CAIR)is an excellent technology used widely for image retarget.It can also be used to tamper with images and bring the trust crisis of image content to the public.Once an image is processe...Content aware image resizing(CAIR)is an excellent technology used widely for image retarget.It can also be used to tamper with images and bring the trust crisis of image content to the public.Once an image is processed by CAIR,the correlation of local neighborhood pixels will be destructive.Although local binary patterns(LBP)can effectively describe the local texture,it however cannot describe the magnitude information of local neighborhood pixels and is also vulnerable to noise.Therefore,to deal with the detection of CAIR,a novel forensic method based on improved local ternary patterns(ILTP)feature and gradient energy feature(GEF)is proposed in this paper.Firstly,the adaptive threshold of the original local ternary patterns(LTP)operator is improved,and the ILTP operator is used to describe the change of correlation among local neighborhood pixels caused by CAIR.Secondly,the histogram features of ILTP and the gradient energy features are extracted from the candidate image for CAIR forgery detection.Then,the ILTP features and the gradient energy features are concatenated into the combined features,and the combined features are used to train classifier.Finally support vector machine(SVM)is exploited as a classifier to be trained and tested by the above features in order to distinguish whether an image is subjected to CAIR or not.The candidate images are extracted from uncompressed color image database(UCID),then the training and testing sets are created.The experimental results with many test images show that the proposed method can detect CAIR tampering effectively,and that its performance is improved compared with other methods.It can achieve a better performance than the state-of-the-art approaches.展开更多
基金National Natural Science Foundation of China(No.519705449)。
文摘To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.
基金financially supported by the National High Technology Research and Development Program of China (863 Program, 2013AA102402)the 521 Talent Project of Zhejiang Sci-Tech University, Chinathe Key Research and Development Program of Zhejiang Province, China (2015C03023)
文摘A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.
文摘Content aware image resizing(CAIR)is an excellent technology used widely for image retarget.It can also be used to tamper with images and bring the trust crisis of image content to the public.Once an image is processed by CAIR,the correlation of local neighborhood pixels will be destructive.Although local binary patterns(LBP)can effectively describe the local texture,it however cannot describe the magnitude information of local neighborhood pixels and is also vulnerable to noise.Therefore,to deal with the detection of CAIR,a novel forensic method based on improved local ternary patterns(ILTP)feature and gradient energy feature(GEF)is proposed in this paper.Firstly,the adaptive threshold of the original local ternary patterns(LTP)operator is improved,and the ILTP operator is used to describe the change of correlation among local neighborhood pixels caused by CAIR.Secondly,the histogram features of ILTP and the gradient energy features are extracted from the candidate image for CAIR forgery detection.Then,the ILTP features and the gradient energy features are concatenated into the combined features,and the combined features are used to train classifier.Finally support vector machine(SVM)is exploited as a classifier to be trained and tested by the above features in order to distinguish whether an image is subjected to CAIR or not.The candidate images are extracted from uncompressed color image database(UCID),then the training and testing sets are created.The experimental results with many test images show that the proposed method can detect CAIR tampering effectively,and that its performance is improved compared with other methods.It can achieve a better performance than the state-of-the-art approaches.