A simple data assimilation method for improving estimation of moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) time-series data products based on the gradient inverse weighted filter and...A simple data assimilation method for improving estimation of moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) time-series data products based on the gradient inverse weighted filter and object analysis is proposed. The properties and quality control (QC) of MODIS LAI data products are introduced. Also, the gradient inverse weighted filter and object analysis are analyzed. An experiment based on the simple data assimilation method is performed using MODIS LAI data sets from 2000 to 2005 of Guizhou Province in China.展开更多
A three-dimensional density model of the crust and uppermost mantle is determined by the inversion of a set of GOCE gravity and gradients residual anomalies beneath the eastern margin of the Tibetan Plateau and its su...A three-dimensional density model of the crust and uppermost mantle is determined by the inversion of a set of GOCE gravity and gradients residual anomalies beneath the eastern margin of the Tibetan Plateau and its surrounding areas. In our work, we choose five independent gravity gradients (Txx, Tzz, Txy, Txz, Tyz) to perform density inversion. Objective function is given based on Tikhonov regularization theory. Seismic S-wave velocities play the role of initial constraint for the inversion based on a relationship between density and S-wave velocity. Damped Least Square method is used during the inversion. The final density results offer some insights into understanding the underlying geodynamic processes: (1) Low densities in the margin of the Tibet, along with low wave velocity and resistivity results, yield conversions from soft and weak Tibet to the hard and rigid cratons. (2)The lowest densities are found in the boundary of the plateau, instead of the whole Tibet indicates that the effects of extrusion stress environment in the margin affect the changes of the substance there. The substances and environments conditioning for the earthquake preparations and strong deformation in this transitional zone. (3) Evident low-D anomaly in the upper and middle crust in the Lasha terrane and Songpan-Ganzi terrane illustrated the eastward sub-ducted of southeastern Tibet, which could be accounts for the frequent volcano and earthouakes there.展开更多
Gradient nanostructured(GNS)metallic materials are commonly achieved by gradient severe plastic de-formation with a gradient of nano-to micro-sized structural units from the surface/boundaries to the center.Certainly,...Gradient nanostructured(GNS)metallic materials are commonly achieved by gradient severe plastic de-formation with a gradient of nano-to micro-sized structural units from the surface/boundaries to the center.Certainly,such GNS can be inversely positioned,which however has not yet been reported.The present work reports a facile method in deformation gradient control to attain inverse gradient nanostructured(iGNS),i.e.,tailoring the cross-section shape,successfully demonstrated in Ti-50.3Ni shape memory alloy(SMA)wire through cold rolling.The microstructure of the rolled wire is characterized by a macroscopic inverse gradient from boundaries to the center—the average sizes of grain and martensite domain evolve from micrometer to nanometer scale.The iGNS leads to a gradient martensitic transforma-tion upon stress,which has been proved to be effectively reversible via in-situ bending scanning electron microscopy(SEM)observations.The iGNS Ti-50.3Ni SMA exhibits quasi-linear superelasticity(SE)in a wide temperature range from 173 to 423 K.Compared to uniform cold rolling,the gradient cold rolling with less overall plasticity further improves SE strain(up to 4.8%)and SE efficiency.In-situ tensiling synchrotron X-ray diffraction(SXRD)analysis reveals the underlying mechanisms of the unique SE in the iGNS SMAs.It provides a new design strategy to realize excellent SE in SMAs and sheds light on the advanced GNS metallic materials.展开更多
With the super-wide band magnetoteiluric sounding data of the JUong (吉隆)-Cuoqin (措勤) profile (named line 800) which was completed in 2001 and the Dingri (定日)-Cuomai (措迈) profile (named line 900) wh...With the super-wide band magnetoteiluric sounding data of the JUong (吉隆)-Cuoqin (措勤) profile (named line 800) which was completed in 2001 and the Dingri (定日)-Cuomai (措迈) profile (named line 900) which was completed in 2004, we obtained the strike direction of each MT station by strike analysis, then traced profiles that were perpendicular to the main strike direction, and finally obtained the resistivity model of each profile by nonlinear conjugate gradients (NLCG) inversion. With these two models, we described the resistivity structure features of the crust and the upper mantle of the center-southern Tibetan plateau and its relationship with Yalung Tsangpo suture: the upper crust of the research area is a resistive layer with resistivity value range of 200-3 000 Ω.m. The depth of its bottom surface is about 15-20 km generally, but the bottom surface of resistive layer is deeper in the middle of these two profiles. At llne 900, it is about 30 km deep, and even at line 800, it is about 38 km deep. There is a gradient belt of resistivity at the depth of 15-45 km, and a conductive layer is beneath it with resistivity even less than 5 Ω.m. This conductive layer is composed of individual conductive bodies, and at the south of the Yalung Tsangpo suture, the conductive bodies are smaller with thickness about 10 km and lean to the north slightly. However, at the north of the Yalung Tsangpo suture, the conductive bodies are larger with thickness about 30 km and also lean to the north slightly. Relatively, the conductive bodies of line 900 are thinner than those of line 800, and the depth of the bottom surface of line 900 is also shallower. At last, after analyzing the effect factors to the resistivity of rocks, it was concluded that the very conductive layer was caused by partial melt or connective water in rocks. It suggests that the middle and lower crust of the center-southern Tibetan plateau is very thick, hot, flabby, and waxy.展开更多
Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain M...Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain Monte Carlo (MCMC) method is proposed in this paper, combining conventional MCMC method based on global optimization with a preconditioned conjugate gradient (PCG) algorithm based on local optimization, so this method does not depend strongly on the initial model. It converges to the global optimum quickly and efficiently on the condition that effi- ciency and stability of inversion are both taken into consid- eration at the same time. The test data verify the feasibility and robustness of the method, and based on this method, we extract the effective pore-fluid bulk modulus, which is applied to reservoir fluid identification and detection, and consequently, a better result has been achieved.展开更多
On the basis of the detailed field work, compositions and contents of plagioclase and K - feldspar,determination of ordering degree, statistical analysis of plagioclase elongation index, mass-balance calculation and m...On the basis of the detailed field work, compositions and contents of plagioclase and K - feldspar,determination of ordering degree, statistical analysis of plagioclase elongation index, mass-balance calculation and mineral spatial distribution and geochemistry, it is concluded that the migmatites in the Dabie complex are characterized by the presence of thermocenters. There are regular changes in mineral character in the migmatites from the centers outwards. The dominant genetic mechanism is anatexis and metasomatism, whose intensities decrease from the centers outwards. Finally, according to the simulated experiment on Liesegang' s rings and non-linear dynamics (dissipative structure theory), the dynamic mechanism of migmatization is profoundly expouded as consisting of the early-stage metasomatism induced by the thermal anomaly, the cardinal-stage anatexis induced by the early-stage matasomatism and finally the last-stage post-anatexis metasomatism.展开更多
Multiple drug resistance(MDR)is the tumor’s way of escaping the cytotoxic effects of various unrelated chemotherapeutic drugs.It can be either innate or acquired.MDR represents the end of the therapeutic pathway,and ...Multiple drug resistance(MDR)is the tumor’s way of escaping the cytotoxic effects of various unrelated chemotherapeutic drugs.It can be either innate or acquired.MDR represents the end of the therapeutic pathway,and it practically leaves no treatment alternatives.Reversing MDR is an unfulfilled goal,despite the important recent advances in cancer research.MDR,the main cause of death in cancer patients,is a multi-factorial development,and most of its known causes have been thoroughly discussed in the literature.However,there is one aspect that has not received adequate consideration-intracellular alkalosis-which is part of wider pH deregulation where the pH gradient is inverted,meaning that extracellular pH is decreased and intracellular pH increased.This situation interacts with MDR and with the proteins involved,such as P-gp,breast cancer resistance protein,and multidrug associated resistance protein 1.However,there are also situations in which these proteins play no role at all,and where pH takes the lead.This is the case in ion trapping.Reversing the pH gradient to normal can be an important contribution to managing MDR.The drugs to manipulate pH exist,and most of them are FDA approved and in clinical use for other purposes.Furthermore,they have low or no toxicity and are inexpensive compared with any chemotherapeutic treatment.Repurposing these drugs and combining them in a reasonable fashion is one of the points proposed in this paper,which discusses the relationship between cancer’s peculiar pH and MDR.展开更多
Because of the combination of optimization algorithms and full wave equations, full-waveform inversion(FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential to...Because of the combination of optimization algorithms and full wave equations, full-waveform inversion(FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data.Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI.展开更多
基金This work was supported by the China Postdoctoral Science Foundation(No.20060390326)the key international S&T cooperation project of China(No.2004DFA06300).
文摘A simple data assimilation method for improving estimation of moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) time-series data products based on the gradient inverse weighted filter and object analysis is proposed. The properties and quality control (QC) of MODIS LAI data products are introduced. Also, the gradient inverse weighted filter and object analysis are analyzed. An experiment based on the simple data assimilation method is performed using MODIS LAI data sets from 2000 to 2005 of Guizhou Province in China.
基金the Major State Basic Research Development Program of China 973 Program(2013CB733301)the National Natural Science Fund(41274025) for supporting the work
文摘A three-dimensional density model of the crust and uppermost mantle is determined by the inversion of a set of GOCE gravity and gradients residual anomalies beneath the eastern margin of the Tibetan Plateau and its surrounding areas. In our work, we choose five independent gravity gradients (Txx, Tzz, Txy, Txz, Tyz) to perform density inversion. Objective function is given based on Tikhonov regularization theory. Seismic S-wave velocities play the role of initial constraint for the inversion based on a relationship between density and S-wave velocity. Damped Least Square method is used during the inversion. The final density results offer some insights into understanding the underlying geodynamic processes: (1) Low densities in the margin of the Tibet, along with low wave velocity and resistivity results, yield conversions from soft and weak Tibet to the hard and rigid cratons. (2)The lowest densities are found in the boundary of the plateau, instead of the whole Tibet indicates that the effects of extrusion stress environment in the margin affect the changes of the substance there. The substances and environments conditioning for the earthquake preparations and strong deformation in this transitional zone. (3) Evident low-D anomaly in the upper and middle crust in the Lasha terrane and Songpan-Ganzi terrane illustrated the eastward sub-ducted of southeastern Tibet, which could be accounts for the frequent volcano and earthouakes there.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171007,52101166,51931004)the 111 Projects 2.0(Grant No.BP0618008).
文摘Gradient nanostructured(GNS)metallic materials are commonly achieved by gradient severe plastic de-formation with a gradient of nano-to micro-sized structural units from the surface/boundaries to the center.Certainly,such GNS can be inversely positioned,which however has not yet been reported.The present work reports a facile method in deformation gradient control to attain inverse gradient nanostructured(iGNS),i.e.,tailoring the cross-section shape,successfully demonstrated in Ti-50.3Ni shape memory alloy(SMA)wire through cold rolling.The microstructure of the rolled wire is characterized by a macroscopic inverse gradient from boundaries to the center—the average sizes of grain and martensite domain evolve from micrometer to nanometer scale.The iGNS leads to a gradient martensitic transforma-tion upon stress,which has been proved to be effectively reversible via in-situ bending scanning electron microscopy(SEM)observations.The iGNS Ti-50.3Ni SMA exhibits quasi-linear superelasticity(SE)in a wide temperature range from 173 to 423 K.Compared to uniform cold rolling,the gradient cold rolling with less overall plasticity further improves SE strain(up to 4.8%)and SE efficiency.In-situ tensiling synchrotron X-ray diffraction(SXRD)analysis reveals the underlying mechanisms of the unique SE in the iGNS SMAs.It provides a new design strategy to realize excellent SE in SMAs and sheds light on the advanced GNS metallic materials.
基金This paper is supported by Ministry of Land and Resources (No. 2001010202)Ministry of Education (No. 0211)the Focused Subject Program of Beijing (No. XK104910598).
文摘With the super-wide band magnetoteiluric sounding data of the JUong (吉隆)-Cuoqin (措勤) profile (named line 800) which was completed in 2001 and the Dingri (定日)-Cuomai (措迈) profile (named line 900) which was completed in 2004, we obtained the strike direction of each MT station by strike analysis, then traced profiles that were perpendicular to the main strike direction, and finally obtained the resistivity model of each profile by nonlinear conjugate gradients (NLCG) inversion. With these two models, we described the resistivity structure features of the crust and the upper mantle of the center-southern Tibetan plateau and its relationship with Yalung Tsangpo suture: the upper crust of the research area is a resistive layer with resistivity value range of 200-3 000 Ω.m. The depth of its bottom surface is about 15-20 km generally, but the bottom surface of resistive layer is deeper in the middle of these two profiles. At llne 900, it is about 30 km deep, and even at line 800, it is about 38 km deep. There is a gradient belt of resistivity at the depth of 15-45 km, and a conductive layer is beneath it with resistivity even less than 5 Ω.m. This conductive layer is composed of individual conductive bodies, and at the south of the Yalung Tsangpo suture, the conductive bodies are smaller with thickness about 10 km and lean to the north slightly. However, at the north of the Yalung Tsangpo suture, the conductive bodies are larger with thickness about 30 km and also lean to the north slightly. Relatively, the conductive bodies of line 900 are thinner than those of line 800, and the depth of the bottom surface of line 900 is also shallower. At last, after analyzing the effect factors to the resistivity of rocks, it was concluded that the very conductive layer was caused by partial melt or connective water in rocks. It suggests that the middle and lower crust of the center-southern Tibetan plateau is very thick, hot, flabby, and waxy.
基金the sponsorship of the National Basic Research Program of China (973 Program,2013CB228604,2014CB239201)the National Oil and Gas Major Projects of China (2011ZX05014-001-010HZ,2011ZX05014-001-006-XY570) for their funding of this research
文摘Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain Monte Carlo (MCMC) method is proposed in this paper, combining conventional MCMC method based on global optimization with a preconditioned conjugate gradient (PCG) algorithm based on local optimization, so this method does not depend strongly on the initial model. It converges to the global optimum quickly and efficiently on the condition that effi- ciency and stability of inversion are both taken into consid- eration at the same time. The test data verify the feasibility and robustness of the method, and based on this method, we extract the effective pore-fluid bulk modulus, which is applied to reservoir fluid identification and detection, and consequently, a better result has been achieved.
基金A project supported by the China National Natural Science Foundation(No.49070079)
文摘On the basis of the detailed field work, compositions and contents of plagioclase and K - feldspar,determination of ordering degree, statistical analysis of plagioclase elongation index, mass-balance calculation and mineral spatial distribution and geochemistry, it is concluded that the migmatites in the Dabie complex are characterized by the presence of thermocenters. There are regular changes in mineral character in the migmatites from the centers outwards. The dominant genetic mechanism is anatexis and metasomatism, whose intensities decrease from the centers outwards. Finally, according to the simulated experiment on Liesegang' s rings and non-linear dynamics (dissipative structure theory), the dynamic mechanism of migmatization is profoundly expouded as consisting of the early-stage metasomatism induced by the thermal anomaly, the cardinal-stage anatexis induced by the early-stage matasomatism and finally the last-stage post-anatexis metasomatism.
文摘Multiple drug resistance(MDR)is the tumor’s way of escaping the cytotoxic effects of various unrelated chemotherapeutic drugs.It can be either innate or acquired.MDR represents the end of the therapeutic pathway,and it practically leaves no treatment alternatives.Reversing MDR is an unfulfilled goal,despite the important recent advances in cancer research.MDR,the main cause of death in cancer patients,is a multi-factorial development,and most of its known causes have been thoroughly discussed in the literature.However,there is one aspect that has not received adequate consideration-intracellular alkalosis-which is part of wider pH deregulation where the pH gradient is inverted,meaning that extracellular pH is decreased and intracellular pH increased.This situation interacts with MDR and with the proteins involved,such as P-gp,breast cancer resistance protein,and multidrug associated resistance protein 1.However,there are also situations in which these proteins play no role at all,and where pH takes the lead.This is the case in ion trapping.Reversing the pH gradient to normal can be an important contribution to managing MDR.The drugs to manipulate pH exist,and most of them are FDA approved and in clinical use for other purposes.Furthermore,they have low or no toxicity and are inexpensive compared with any chemotherapeutic treatment.Repurposing these drugs and combining them in a reasonable fashion is one of the points proposed in this paper,which discusses the relationship between cancer’s peculiar pH and MDR.
基金supported by the National Natural Science Foundation of China(Grant No.41504106&41274099)the Science Foundation of China University of Petroleum(Beijing)(Grant No.2462015YJRC012)State Laboratory of Petroleum Resource and Prospecting(Grant No.PRP/indep-3-1508)
文摘Because of the combination of optimization algorithms and full wave equations, full-waveform inversion(FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data.Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI.