期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
High-gradient magnetic field-controlled migration of solutes and particles and their effects on solidification microstructure:A review 被引量:6
1
作者 刘铁 王强 +2 位作者 苑轶 王凯 李国建 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期92-103,共12页
We present a review of the principal developments in the evolution and synergism of solute and particle migration in a liquid melt in high-gradient magnetic fields and we also describe their effects on the solidificat... We present a review of the principal developments in the evolution and synergism of solute and particle migration in a liquid melt in high-gradient magnetic fields and we also describe their effects on the solidification microstructure of alloys.Diverse areas relevant to various aspects of theory and applications of high-gradient magnetic field-controlled migration of solutes and particles are surveyed. They include introduction, high-gradient magnetic field effects, migration behavior of solute and particles in high-gradient magnetic fields, microstructure evolution induced by high-gradient magnetic fieldcontrolled migrations of solute and particles, and properties of materials modified by high-gradient magnetic field-tailored microstructure. Selected examples of binary and multiphase alloy systems are presented and examined, with the main focus on the correlation between the high-gradient magnetic field-modified migration and the related solidification microstructure evolution. Particular attention is given to the mechanisms responsible for the microstructure evolution induced by highgradient magnetic fields. 展开更多
关键词 high gradient magnetic field migration of solute and particle SOLIDIFICATION microstructure
下载PDF
Effect of gradient magnetic field on physiochemistry functions of rice seedlings
2
《Chinese Rice Research Newsletter》 1999年第1期10-10,共1页
Rice varieties Handao 2,Zhongbai 4,Han-jingzi,and Akihikari were treated with gradi-ent magnetic fileld to study the effect of gradi-ent field on rice.The magnetic field was madeup of 12 plots magnetic plates arranged... Rice varieties Handao 2,Zhongbai 4,Han-jingzi,and Akihikari were treated with gradi-ent magnetic fileld to study the effect of gradi-ent field on rice.The magnetic field was madeup of 12 plots magnetic plates arranged in eachother south and north pole.The magneticstrength was 0-40 mT.Each four varieties wasput under the magnetic plate 15 cm away,andwent through the magnetic field with the speedof 20 cm/s.The same varieties without thetreatment were used as CK.Both of the seedswere soaked in water for 48 h in room temper-ature,and then sprouted on the porcelain platewith absorbed water paper.When the 展开更多
关键词 Effect of gradient magnetic field on physiochemistry functions of rice seedlings
下载PDF
Effects of gradient high-field static magnetic fields on diabetic mice 被引量:3
3
作者 Biao Yu Chao Song +11 位作者 Chuan-Lin Feng Jing Zhang Ying Wang Yi-Ming Zhu Lei Zhang Xin-Miao Ji Xiao-Fei Tian Guo-Feng Cheng Wei-Li Chen Vitalii Zablotskii Hua Wang Xin Zhang 《Zoological Research》 SCIE CAS CSCD 2023年第2期249-258,共10页
Although 9.4 T magnetic resonance imaging(MRI) has been tested in healthy volunteers,its safety in diabetic patients is unclear.Furthermore,the effects of high static magnetic fields(SMFs),especially gradient vs.unifo... Although 9.4 T magnetic resonance imaging(MRI) has been tested in healthy volunteers,its safety in diabetic patients is unclear.Furthermore,the effects of high static magnetic fields(SMFs),especially gradient vs.uniform fields,have not been investigated in diabetics.Here,we investigated the consequences of exposure to 1.0-9.4 T high SMFs of different gradients(>10 T/m vs.0-10 T/m)on type 1 diabetic(T1D) and type 2 diabetic(T2D) mice.We found that 14 h of prolonged treatment of gradient(as high as 55.5 T/m) high SMFs(1.0-8.6 T) had negative effects on T1D and T2D mice,including spleen,hepatic,and renal tissue impairment and elevated glycosylated serum protein,blood glucose,inflammation,and anxiety,while 9.4 T quasi-uniform SMFs at 0-10 T/m did not induce the same effects.In regular T1D mice(blood glucose>16.7 mmol/L),the>10 T/m gradient high SMFs increased malondialdehyde(P<0.01) and decreased superoxide dismutase(P<0.05).However,in the severe T1D mice(blood glucose≥30.0 mmol/L),the>10 T/m gradient high SMFs significantly increased tissue damage and reduced survival rate.In vitro cellular studies showed that gradient high SMFs increased cellular reactive oxygen species and apoptosis and reduced MS-1 cell number and proliferation.Therefore,this study showed that prolonged exposure to high-field(1.0-8.6 T)>10 T/m gradient SMFs(35-1 380 times higher than that of current clinical MRI)can have negative effects on diabetic mice,especially mice with severe T1D,whereas 9.4 T high SMFs at 0-10T/m did not produce the same effects,providing important information for the future development and clinical application of SMFs,especially high-field MRI. 展开更多
关键词 Type 2 diabetes Type 1 diabetes magnetic resonance imaging(MRI) gradient static magnetic field Quasi-uniform static magnetic field
下载PDF
Experimental investigation on possibility of oxygen enrichment by using gradient magnetic fields
4
作者 CAI Jun WANG Li +2 位作者 WU Ping TONG Lige SUN Shufeng 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2007年第3期271-276,共6页
This paper presents a novel method that uses the interception effect of gradient magnetic field on oxygen molecules to realize enrichment.The use of two opposite magnetic poles of two magnets at a certain distance for... This paper presents a novel method that uses the interception effect of gradient magnetic field on oxygen molecules to realize enrichment.The use of two opposite magnetic poles of two magnets at a certain distance forms a magnetic space having a field intensity gradient near its borders.When air injected into the magnetic space outflows from the magnetic space via its borders,oxygen molecules in the air will experience the interception effect of the gradient magnetic field,but nitrogen molecules will outflow from the magnetic space without hindrance.Thus,continuous oxygen enrichment is realized.The enrichment degree of oxygen reaches 0.65%when the inlet and outlet air flows are 40 mL/min and 20 mL/min,respectively,and the gas temperature is 298 K and the maximal product of magnetic flux density and its gradient is 563 T2/m(the distance between two magnetic poles is 1 mm).When the gas temperature rises to 343 K,the enrichment degree drops to 0.32%;and when the maximal product of magnetic flux density and field intensity gradient drops to 101 T2/m(the distance between two magnetic poles is 4 mm),the enrichment degree drops to 0.23%.The experimental results show that there is an optimal ratio between the inlet air flow and the outlet air flow.Under the experimental conditions in this paper,the value is about 2.0.It is demonstrated that the method presented in this paper can continuously enrich oxygen and has a higher enrich-ment degree than other oxygen-enrichment methods using magnetic separation. 展开更多
关键词 magnetic separation oxygen enrichment gradient magnetic field separation of oxygen and nitrogen magnetizing force
原文传递
Rotating spin-1/2 Bose–Einstein condensates in a gradient magnetic field with spin–orbit coupling
5
作者 Ji-Guo Wang Yue-Qing Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2020年第9期140-145,共6页
We study the ground-state phases of two-dimensional rotating spin-orbit coupled spin-1/2 Bose-Einstein condensates(BECs) in a gradient magnetic field. The competition between gradient magnetic field, spin-orbit coupli... We study the ground-state phases of two-dimensional rotating spin-orbit coupled spin-1/2 Bose-Einstein condensates(BECs) in a gradient magnetic field. The competition between gradient magnetic field, spin-orbit coupling and rotation leads to a variety of ground-state phase structures. In the weakly rotation regime, as the increase of gradient magnetic field strength, the BECs experiences a phase transition from the unstable phase to the single vortex-line phase. The unstable phase presents the vortex lines structures along the off-diagonal direction. With magnetic field gradient strength increasing, the number of vortex lines changes accordingly. As the magnetic field gradient strength increases further, the single vortex-line phase with a single vortex line along the diagonal direction is formed. The phase diagram shows that the boundary between the two phases is linear with the relative repulsion λ?≥?1 and is nonlinear with λ? 展开更多
关键词 Bose–Einstein condensate spin–orbit coupling gradient magnetic field
原文传递
Effect of Raman-pulse duration related to the magnetic field gradient in high-precision atom gravimeters
6
作者 程源 谈玉杰 +3 位作者 周敏康 段小春 邵成刚 胡忠坤 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期137-145,共9页
The effect of the Raman-pulse duration related to the magnetic field gradient, as a systematic error, is playing an important role on evaluating the performance of high-precision atomic gravimeters. We study this effe... The effect of the Raman-pulse duration related to the magnetic field gradient, as a systematic error, is playing an important role on evaluating the performance of high-precision atomic gravimeters. We study this effect with a simplified theoretical model of the time-propagation operator. According to the typical parameters, we find that this effect should be taken into account when the gravimeter reaches an accuracy of 10^-10g, and the larger the pulse duration is, the more obvious the systematic effect will be. Finally, we make a simple discussion on the possibility of testing this effect. 展开更多
关键词 atom gravimeters magnetic field gradient Raman-pulse duration time-propagation operator
下载PDF
In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer
7
作者 房建成 王涛 +2 位作者 张红 李阳 蔡洪炜 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期253-258,共6页
A method of measuring in-situ magnetic field gradient is proposed in this paper. The magnetic shield is widely used in the atomic magnetometer. However, there is magnetic field gradient in the magnetic shield, which w... A method of measuring in-situ magnetic field gradient is proposed in this paper. The magnetic shield is widely used in the atomic magnetometer. However, there is magnetic field gradient in the magnetic shield, which would lead to additional gradient broadening. It is impossible to use an ex-situ magnetometer to measure magnetic field gradient in the region of a cell, whose length of side is several centimeters. The method demonstrated in this paper can realize the in-situ measurement of the magnetic field gradient inside the cell, which is significant for the spin relaxation study. The magnetic field gradients along the longitudinal axis of the magnetic shield are measured by a spin-exchange relaxation-free (SERF) magnetometer by adding a magnetic field modulation in the probe beam's direction. The transmissivity of the cell for the probe beam is always inhomogeneous along the pump beam direction, and the method proposed in this paper is independent of the intensity of the probe beam, which means that the method is independent of the cell's transmissivity. This feature makes the method more practical experimentally. Moreover, the AC-Stark shift can seriously degrade and affect the precision of the magnetic field gradient measurement. The AC-Stark shift is suppressed by locking the pump beam to the resonance of potassium's D1 line. Furthermore, the residual magnetic fields are measured with σ+- and σ--polarized pump beams, which can further suppress the effect of the AC-Stark shift. The method of measuring in-situ magnetic field gradient has achieved a magnetic field gradient precision of better than 30 pT/mm. 展开更多
关键词 spin-exchange relaxation-free atomic magnetometer magnetic field gradient magnetic shield AC-Stark shift
下载PDF
Effects of 3.7 T-24.5 T high magnetic fields on tumor-bearing mice
8
作者 田小飞 王泽 +5 位作者 张磊 郗传英 皮雳 齐紫平 陆轻铀 张欣 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期649-658,共10页
Since high magnetic field(MF) intensity can improve the image quality and reduce magnetic resonance imaging(MRI) acquisition time, the field intensity of MRIs has continued to increase over the past few decades. A... Since high magnetic field(MF) intensity can improve the image quality and reduce magnetic resonance imaging(MRI) acquisition time, the field intensity of MRIs has continued to increase over the past few decades. Although MRIs in most current hospitals are 0.5 T–3 T, there are preclinical studies have been carried out using 9.4 T MRI, and engineers are also putting efforts on building MRIs with even higher MFs. However, the accompanied safety issue of high-field MRIs is an emergent question to address before their clinical applications. In the meantime, the static magnetic field(SMF) has been shown to inhibit tumor growth in previous studies. Here, we investigated both the safety issue and the anti-tumor potentials of 3.7 T–24.5 T SMFs on GIST-T1 gastrointestinal stromal tumor-bearing nude mice. We followed up the mice three weeks after their exposure to high SMF and found that none of the mice died or had severe organ damage, except for slightly decreased food intake, weight gain, and liver function. Moreover, the tumor growth was inhibited by 3.7 T–24.5 T SMFs(up to ~54%). It is interesting that the effects are more dependent on MF gradient than intensities, and for the same gradient and intensity, mice responded differently to hypogravity and hypergravity conditions. Therefore, our study not only demonstrated the safeness of high SMFs up to 24.5 T on mice but also revealed their anti-tumor potentials in the future. 展开更多
关键词 static magnetic field (SMF) high magnetic field (MF) TUMOR magnetic field gradient
下载PDF
Second-order magnetic field gradient-induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator
9
作者 Kang Cai RuiXia Wang +1 位作者 ZhangQi Yin GuiLu Long 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2017年第7期17-24,共8页
We consider a cantilever mechanical oscillator(MO) made of diamond. A nitrogen-vacancy(NV) center lies at the end of the cantilever. Two magnetic tips near the NV center induce a strong second-order magnetic field gra... We consider a cantilever mechanical oscillator(MO) made of diamond. A nitrogen-vacancy(NV) center lies at the end of the cantilever. Two magnetic tips near the NV center induce a strong second-order magnetic field gradient. Under coherent driving of the MO, we find that the coupling between the MO and the NV center is greatly enhanced. We studied how to generate entanglement between the MO and the NV center and realize quantum state transfer between them. We also propose a scheme to generate two-mode squeezing between different MO modes by coupling them to the same NV center. The decoherence and dissipation effects for both the MO and the NV center are numerically calculated using the present parameter values of the experimental configuration. We have achieved high fidelity for entanglement generation, quantum state transfer, and large twomode squeezing. 展开更多
关键词 second-order magnetic field gradient NV center mechanical oscillator ENTANGLEMENT state transfer SQUEEZING
原文传递
A New Approach for Segregation Control in Alloys by High Magnetic Field Gradients and Its Application in Functional Materials
10
作者 LIU Tie WANG Qiang +3 位作者 LIU Yin GAO Peng-fei LOU Chang-sheng HE Ji-cheng 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2012年第S1期291-296,共6页
In this study,the effects of high magnetic field gradients on the segregation of alloying elements,crystallized phases,and particles in alloys during solidification process and corresponding microstructures were discu... In this study,the effects of high magnetic field gradients on the segregation of alloying elements,crystallized phases,and particles in alloys during solidification process and corresponding microstructures were discussed.It was confirmed that applying an external high magnetic field gradient during solidification process is an effective processing route for controlling segregation in alloys and then fabricating functional materials which have special mierostruetures and properties.Such controlling and fabrication were realized by controlling the migration of the alloying elements, crystallized phases,and particles in the liquid matrix on the basis of the Lorentz and magnetic forces. 展开更多
关键词 high magnetic field gradient SEGREGATION functional material Lorentz force magnetic force
原文传递
Design of magnet and control of the beamemittance for Penning H^- ion source
11
作者 欧阳华甫 张华顺 《Chinese Physics C》 SCIE CAS CSCD 北大核心 2008年第8期668-672,共5页
The design requirement and principle of the deflection magnet for Magnetron and Penning H^- ion source are discussed. It is proved that there exists a maximum emittance for the beam that may be transformed by the magn... The design requirement and principle of the deflection magnet for Magnetron and Penning H^- ion source are discussed. It is proved that there exists a maximum emittance for the beam that may be transformed by the magnet into a state with equal Twiss parameters of αr=αy and βr =βr=βy, which is the requisite condition to get a minimum emittance at the entrance of RFQ after transporting by a LEBT with solenoids. For this maximum emittance, the corresponding magnetic field gradient index is 1. 展开更多
关键词 H^- ion source Magnetron ion source Penning ion source magnetic field gradient index
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部