A polarization-insensitive unidirectional spoof surface plasmon polariton(SPP) coupler mediated by a gradient metasurface is proposed. The field distributions and average Poynting vector of the coupled spoof SPPs ar...A polarization-insensitive unidirectional spoof surface plasmon polariton(SPP) coupler mediated by a gradient metasurface is proposed. The field distributions and average Poynting vector of the coupled spoof SPPs are analyzed. The simulated and experimental results support the theoretical analysis and indicate that the designed gradient metasurface can couple both the parallel-polarized and normally-polarized incident waves to the spoof SPPs propagating in the same direction at about 5 GHz.展开更多
A new method to design an ultra-thin high-gain circularly-polarized antenna system with high efficiency is proposed based on the geometrical phase gradient metasurface(GPGM).With an accuracy control of the transmiss...A new method to design an ultra-thin high-gain circularly-polarized antenna system with high efficiency is proposed based on the geometrical phase gradient metasurface(GPGM).With an accuracy control of the transmission phase and also the high transmission amplitude,the GPGM is capable of manipulating an electromagnetic wave arbitrarily.A focusing transmission lens working at Ku band is well optimized with the F /D of 0.32.A good focusing effect is demonstrated clearly by theoretical calculation and electromagnetic simulation.For further application,an ultra-thin single-layer transmissive lens antenna based on the proposed focusing metasurface operating at 13 GHz is implemented and launched by an original patch antenna from the perspective of high integration,simple structure,and low cost.Numerical and experimental results coincide well,indicating the advantages of the antenna system,such as a high gain of 17.6 d B,the axis ratio better than 2 d B,a high aperture efficiency of 41%,and also a simple fabrication process based on the convenient print circuit board technology.The good performance of the proposed antenna indicates promising applications in portable communication systems.展开更多
基金Project supported by the China Postdoctoral Science Foundation(Grant No.2015M580849)the National Natural Science Foundation of China(Grant Nos.61471292,61501365,61471388,6133100541404095,and 41390454)
文摘A polarization-insensitive unidirectional spoof surface plasmon polariton(SPP) coupler mediated by a gradient metasurface is proposed. The field distributions and average Poynting vector of the coupled spoof SPPs are analyzed. The simulated and experimental results support the theoretical analysis and indicate that the designed gradient metasurface can couple both the parallel-polarized and normally-polarized incident waves to the spoof SPPs propagating in the same direction at about 5 GHz.
基金Project supported by the National Natural Science Foundation of China(Grant No.61372034)
文摘A new method to design an ultra-thin high-gain circularly-polarized antenna system with high efficiency is proposed based on the geometrical phase gradient metasurface(GPGM).With an accuracy control of the transmission phase and also the high transmission amplitude,the GPGM is capable of manipulating an electromagnetic wave arbitrarily.A focusing transmission lens working at Ku band is well optimized with the F /D of 0.32.A good focusing effect is demonstrated clearly by theoretical calculation and electromagnetic simulation.For further application,an ultra-thin single-layer transmissive lens antenna based on the proposed focusing metasurface operating at 13 GHz is implemented and launched by an original patch antenna from the perspective of high integration,simple structure,and low cost.Numerical and experimental results coincide well,indicating the advantages of the antenna system,such as a high gain of 17.6 d B,the axis ratio better than 2 d B,a high aperture efficiency of 41%,and also a simple fabrication process based on the convenient print circuit board technology.The good performance of the proposed antenna indicates promising applications in portable communication systems.