期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Face mask detection algorithm based on HSV+HOG features and SVM 被引量:6
1
作者 HE Yumin WANG Zhaohui +2 位作者 GUO Siyu YAO Shipeng HU Xiangyang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期267-275,共9页
To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machine... To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm. 展开更多
关键词 hue-saturation-value(HSV)features histogram of oriented gradient(HOG)features support vector machine(SVM) face mask detection feature point detection
下载PDF
Automated detection and identification of white-backed planthoppers in paddy fields using image processing 被引量:14
2
作者 YAO Qing CHEN Guo-te +3 位作者 WANG Zheng ZHANG Chao YANG Bao-jun TANG Jian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第7期1547-1557,共11页
A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective.... A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields. 展开更多
关键词 white-backed planthopper developmental stage automated detection and identification image processing histogram of oriented gradient features gabor features local binary pattern features
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部