The authors propose an affine scaling modified gradient path method in association with reduced projective Hessian and nonmonotonic interior backtracking line search techniques for solving the linear equality constrai...The authors propose an affine scaling modified gradient path method in association with reduced projective Hessian and nonmonotonic interior backtracking line search techniques for solving the linear equality constrained optimization subject to bounds on variables. By employing the QR decomposition of the constraint matrix and the eigensystem decomposition of reduced projective Hes- sian matrix in the subproblem, the authors form affine scaling modified gradient curvilinear path very easily. By using interior backtracking line search technique, each iterate switches to trial step of strict interior feasibility. The global convergence and fast local superlinear/quadratical convergence rates of the proposed algorithm are established under some reasonable conditions. A nonmonotonic criterion should bring about speeding up the convergence progress in some ill-conditioned cases. The results of numerical experiments are reported to show the effectiveness of the proposed algorithm.展开更多
In this paper we propose an affine scaling interior algorithm via conjugate gradient path for solving nonlinear equality systems subject to bounds on variables. By employing the affine scaling conjugate gradient path ...In this paper we propose an affine scaling interior algorithm via conjugate gradient path for solving nonlinear equality systems subject to bounds on variables. By employing the affine scaling conjugate gradient path search strategy, we obtain an iterative direction by solving the linearize model. By using the line search technique, we will find an acceptable trial step length along this direction which is strictly feasible and makes the objective func- tion nonmonotonically decreasing. The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions. Furthermore, the numerical results of the proposed algorithm indicate to be effective.展开更多
基金the National Natural Science Foundation of China under Grant No.10471094the Ph.D.Foundation under Grant No.0527003+1 种基金the Shanghai Leading Academic Discipline Project (T0401)the Science Foundation of Shanghai Education Committee under Grant No.05DZ11
文摘The authors propose an affine scaling modified gradient path method in association with reduced projective Hessian and nonmonotonic interior backtracking line search techniques for solving the linear equality constrained optimization subject to bounds on variables. By employing the QR decomposition of the constraint matrix and the eigensystem decomposition of reduced projective Hes- sian matrix in the subproblem, the authors form affine scaling modified gradient curvilinear path very easily. By using interior backtracking line search technique, each iterate switches to trial step of strict interior feasibility. The global convergence and fast local superlinear/quadratical convergence rates of the proposed algorithm are established under some reasonable conditions. A nonmonotonic criterion should bring about speeding up the convergence progress in some ill-conditioned cases. The results of numerical experiments are reported to show the effectiveness of the proposed algorithm.
基金the National Science Foundation of China Grant (10471094)the Ph.D.Foundation Grant (0527003) of Chinese Education Ministry+2 种基金the Shanghai Leading Academic Discipline Project (T0401)the Scientific Computing Key Laboratory of Shanghai Universitiesthe Science Foundation Grant (05DZ11) of Shanghai Education Committee
文摘In this paper we propose an affine scaling interior algorithm via conjugate gradient path for solving nonlinear equality systems subject to bounds on variables. By employing the affine scaling conjugate gradient path search strategy, we obtain an iterative direction by solving the linearize model. By using the line search technique, we will find an acceptable trial step length along this direction which is strictly feasible and makes the objective func- tion nonmonotonically decreasing. The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions. Furthermore, the numerical results of the proposed algorithm indicate to be effective.