A set of standard chronologies for tree-ring width(TRW),earlywood width(EWW)and latewood width(LWW)in Pinus tabuliformis Carr.along an altitudi-nal gradient(1450,1400,and 1350 m a.s.l.)on Baiyunshan Mountain,Central C...A set of standard chronologies for tree-ring width(TRW),earlywood width(EWW)and latewood width(LWW)in Pinus tabuliformis Carr.along an altitudi-nal gradient(1450,1400,and 1350 m a.s.l.)on Baiyunshan Mountain,Central China to analyze the effect of varying temperature and precipitation on growth along the gradi-ent.Correlation analyses showed that at all three altitudes and the TRW and EWW chronologies generally had signifi-cant negative correlations with mean and maximum tem-peratures in the current April and May and with minimum temperatures in the prior July and August,but significant positive correlations with precipitation in the current May.Correlations were generally significantly negative between LWW chronologies and all temperatures in the prior July and August,indicating that the prior summer temperature had a strong lag effect on the growth of P.tabuliformis that increased with altitude.The correlation with the standard-ized precipitation evapotranspiration index(SPEI)confirmed that wet conditions in the current May promoted growth of TR and EW at all altitudes.Significant altitudinal differences were also found;at 1400 m,there were significant positive correlations between EWW chronologies and SPEI in the current April and significant negative correlations between LWW chronologies and SPEI in the current September,but these correlations were not significant at 1450 m.At 1350 m,there were also significant negative correlations between the TRW and the EWW chronologies and SPEI in the prior October and the current July and between LWW chronology and SPEI in the current August,but these cor-relations were not significant at 1400 m.Moving correlation results showed a stable response of EWW in relation to the SPEI in the current May at all three altitudes and of LWW to maximum temperature in the prior July-August at 1400 m from 2002 to 2018.The EWW chronology at 1400 m and the LWW chronology at 1450 m were identified as more suitable for climate reconstruction.These results provide a strong scientific basis for forest management decisions and climate reconstructions in Central China.展开更多
Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st...Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.展开更多
The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic f...The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic field is important for the optimal operation of cryogen-free MRI systems.In this study,we present an enhanced shielding method incorporating a regionalized stray field constraining strategy.By optimizing the constraint parameters,we could develop engineering-feasible gradient coil schemes without increasing system complexity but with the stray field intensity reduced by half.In real measurement in an integrated MRI system,the developed gradient assembly demonstrated good performance and supported to output images of excellent quality.Our findings suggested that the proposed method could potentially form a useful design paradigm for cryogen-free MRI magnets.展开更多
Across a gradient belt of the Western Sichuan Plateau,geohazards have seriously limited economic and social development.According to incomplete statistics,15,673 geohazards have been recorded in the study area.In orde...Across a gradient belt of the Western Sichuan Plateau,geohazards have seriously limited economic and social development.According to incomplete statistics,15,673 geohazards have been recorded in the study area.In order to mitigate the threat of geohazards to human engineering activities in the region,an overall understanding of the distribution pattern of geohazards and susceptibility assessment are necessary.In this paper,a gradient belt of the Western Sichuan Plateau and its zoning criteria were defined.Subsequently,on the basis of relief amplitude,distance to faults,rainfall,and human activities,three indicators of endogenic process were introduced:Bouguer gravity anomaly gradient,vertical deformation gradient,and horizontal deformation gradient.Thereafter,the distribution patterns of geohazards were investigated through mathematical statistics and ArcGIS software.By randomly selecting 10,449 hazards,a geohazard susceptibility map was generated using the Information Value(IV)model.Finally,the IV model was validated against 5224 hazards using the Area Under Curve(AUC)method.The results show that 47.6%of the geohazards were distributed in the zone of steep slope.Geohazards showed strong responses to distance to faults,human activities,and annual rainfall.The distribution of geohazards in the gradient belt of the Western Sichuan Plateau is more sensitive to vertical internal dynamics factors(such as vertical deformation gradient and Bouguer gravity anomaly gradient)without any apparent sensitivity to horizontal internal dynamics factors.The areas of high and very-high risk account for up to 32.22%,mainly distributed in the Longmenshan and Anning River faults.According to the AUC plot,the success rate of the IV model for generating the susceptibility map is 76%.This susceptibility map and geohazard distribution pattern can provide a reference for geological disaster monitoring,preparation of post-disaster emergency measures,and town planning.展开更多
As a mature distributed machine learning paradigm,federated learning enables wireless edge devices to collaboratively train a shared AI-model by stochastic gradient descent(SGD).However,devices need to upload high-dim...As a mature distributed machine learning paradigm,federated learning enables wireless edge devices to collaboratively train a shared AI-model by stochastic gradient descent(SGD).However,devices need to upload high-dimensional stochastic gradients to edge server in training,which cause severe communication bottleneck.To address this problem,we compress the communication by sparsifying and quantizing the stochastic gradients of edge devices.We first derive a closed form of the communication compression in terms of sparsification and quantization factors.Then,the convergence rate of this communicationcompressed system is analyzed and several insights are obtained.Finally,we formulate and deal with the quantization resource allocation problem for the goal of minimizing the convergence upper bound,under the constraint of multiple-access channel capacity.Simulations show that the proposed scheme outperforms the benchmarks.展开更多
Thermoregulatory textiles,leveraging high-emissivity structural materials,have arisen as a promising candidate for personal cooling management;however,their advancement has been hindered by the underperformed water mo...Thermoregulatory textiles,leveraging high-emissivity structural materials,have arisen as a promising candidate for personal cooling management;however,their advancement has been hindered by the underperformed water moisture transportation capacity,which impacts on their thermophysiological comfort.Herein,we designed a wettability-gradient-induced-diode(WGID)membrane achieving by MXene-engineered electrospun technology,which could facilitate heat dissipation and moisture-wicking transportation.As a result,the obtained WGID membrane could obtain a cooling temperature of 1.5℃ in the“dry”state,and 7.1℃ in the“wet”state,which was ascribed to its high emissivity of 96.40%in the MIR range,superior thermal conductivity of 0.3349 W m^(-1) K^(-1)(based on radiation-and conduction-controlled mechanisms),and unidirectional moisture transportation property.The proposed design offers an approach for meticulously engineering electrospun membranes with enhanced heat dissipation and moisture transportation,thereby paving the way for developing more efficient and comfortable thermoregulatory textiles in a high-humidity microenvironment.展开更多
The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sens...The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sensing actuated gradient hydrogel that combines ultrafast actuation and high sensitivity for remote interaction with robotic hand. The gradient network structure, achieved through a wettability difference method involving the rapid precipitation of MoO_(2) nanosheets, introduces hydrophilic disparities between two sides within hydrogel. This distinctive approach bestows the hydrogel with ultrafast thermo-responsive actuation(21° s^(-1)) and enhanced photothermal efficiency(increase by 3.7 ℃ s^(-1) under 808 nm near-infrared). Moreover, the local cross-linking of sodium alginate with Ca^(2+) endows the hydrogel with programmable deformability and information display capabilities. Additionally, the hydrogel exhibits high sensitivity(gauge factor 3.94 within a wide strain range of 600%), fast response times(140 ms) and good cycling stability. Leveraging these exceptional properties, we incorporate the hydrogel into various soft actuators, including soft gripper, artificial iris, and bioinspired jellyfish, as well as wearable electronics capable of precise human motion and physiological signal detection. Furthermore, through the synergistic combination of remarkable actuation and sensitivity, we realize a self-sensing touch bioinspired tongue. Notably, by employing quantitative analysis of actuation-sensing, we realize remote interaction between soft-hard robot via the Internet of Things. The multifunctional self-sensing actuated gradient hydrogel presented in this study provides a new insight for advanced somatosensory materials, self-feedback intelligent soft robots and human–machine interactions.展开更多
Temporal changes in the relationship between tree growth and climate have been observed in numerous forests across the world.The patterns and the possible regu-lators(e.g.,forest community structure)of such changes ar...Temporal changes in the relationship between tree growth and climate have been observed in numerous forests across the world.The patterns and the possible regu-lators(e.g.,forest community structure)of such changes are,however,not well understood.A vegetation survey and analyses of growth-climate relationships for Abies georgei var.Smithii(Smith fir)forests were carried along an altitudi-nal gradient from 3600 to 4200 m on Meili Snow Mountain,southeastern Tibetan Plateau.The results showed that the associations between growth and temperature have declined since the 1970s over the whole transect,while response to standardized precipitation-evapotranspiration indices(SPEI)strengthened in the mid-and lower-transect.Comparison between growth and vegetation data showed that tree growth was more sensitive to drought in stands with higher species richness and greater shrub cover.Drought stress on growth may be increased by heavy competition from shrub and herb layers.These results show the non-stationary nature of tree growth-climate associations and the linkage to for-est community structures.Vegetation components should be considered in future modeling and forecasting of forest dynamics in relation to climate changes.展开更多
Strain gradient is a normal phenomenon around a heterostructural interface in ultrathin film,and it is important to determine its effect on magnetic interactions to understand interfacial coupling.In this work,ultrath...Strain gradient is a normal phenomenon around a heterostructural interface in ultrathin film,and it is important to determine its effect on magnetic interactions to understand interfacial coupling.In this work,ultrathin Pr_(0.67)Sr_(0.33)MnO_(3)(PSMO)films on different substrates are studied.For PSMO film under different in-plane strain conditions,the saturated magnetization and Curie temperature can be qualitatively explained by double-exchange interaction and the Jahn-Teller distortion.However,the difference in the saturated magnetization with zero field cooling and 5 T field cooling is proportional to the strain gradient.Strain-gradient-induced structural disorder is proposed to enhance phonon-electron antiferromagnetic interactions and the corresponding antiferromagnetic-to-ferromagnetic phase transition via a strong magnetic field during the field cooling process.A non-monotonous structural transition of the MnO_(6) octahedral rotation can enlarge the strain gradient in PSMO film on a SrTiO_(3) substrate.This work demonstrates the existence of the flexomagnetic effect in ultrathin manganite film,which should be applicable to other complex oxide systems.展开更多
The isolation of minor components from complex natural product matrices presents a significant challenge in the field of purification science due to their low concentrations and the presence of structurally similar co...The isolation of minor components from complex natural product matrices presents a significant challenge in the field of purification science due to their low concentrations and the presence of structurally similar compounds.This study introduces an optimized twin-column recycling chromatography method for the efficient and simultaneous purification of these elusive constituents.By introducing water at a small flowing rate between the twin columns,a step solvent gradient is created,by which the leading edge of concentration band would migrate at a slower rate than the trailing edge as it flowing from the upstream to downstream column.Hence,the band broadening is counterbalanced,resulting in an enrichment effect for those minor components in separation process.Herein,two target substances,which showed similar peak position in high performance liquid chromatography(HPLC)and did not exceed 1.8%in crude paclitaxel were selected as target compounds for separation.By using the twin-column recycling chromatography with a step solvent gradient,a successful purification was achieved in getting the two with the purity almost 100%.We suggest this method is suitable for the separation of most components in natural produces,which shows higher precision and recovery rate compared with the common lab-operated separation ways for natural products(thin-layer chromatography and prep-HPLC).展开更多
Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is...Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is used to evaluate the policy.In the policy improvement process,the policy gradient based method is employed.展开更多
Species richness generally decreases with increasing latitude,a biodiversity gradient that has long been considered as one of the few laws in ecology.This latitudinal diversity gradient has been observed in many major...Species richness generally decreases with increasing latitude,a biodiversity gradient that has long been considered as one of the few laws in ecology.This latitudinal diversity gradient has been observed in many major groups of organisms.In plants,the latitudinal diversity gradient has been observed in vascular plants,angiosperms,ferns,and liverworts.However,a conspicuous latitudinal diversity gradient in mosses at a global or continental scale has not been observed until now.Here,we analyze a comprehensive data set including moss species in each band of 20° in latitude worldwide.Our results show that moss species richness decreases strongly with increasing latitude,regardless of whether the globe is considered as a whole or different longitudinal segments(e.g.,Old World versus New World) are considered separately.This result holds when variation in area size among latitudinal bands is taken into account.Pearson's correlation coefficient between latitude and species richness is-0.99 for both the Northern and Southern Hemispheres.Because bryophytes are an extant lineage of early land plants and because mosses not only include most of extant species of bryophytes but also are important constituents of most terrestrial ecosystems,understanding geographic patterns of mosses is particularly important The finding of our study fills a critical knowledge gap.展开更多
The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of verti...The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.展开更多
To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.Th...To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.The effects of different infiltrant laying methods on the microstructure and ablative properties of Zr-based ultrahigh-temperature gradient composites were investigated.The results showed that the gradient structure of the Zr-based ultrahigh-temperature gradient composites differed when the composition ratio of the infiltrant was changed.When the thicknesses of the Zr/Mo/Si layers were 6/4/12 mm and 8/2/12 mm,the SiMoZrC solid solution content in the samples increased and decreased along the infiltration direction,respectively.The gradient samples were ablated in an oxyacetylene flame at 3000°C for 40 s.The ablation resistance of the sample was the highest when the infiltrant was a powder and the thickness of the Zr/Mo/Si layer was 6/4/12 mm.展开更多
Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In thi...Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients.展开更多
The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far ...The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far away from the real velocity model,an excessive number of low-wavenumber components in the gradient will also reduce the convergence rate and inversion accuracy.To solve this problem,this paper firstly derives a formula of scattering angle weighted gradient in FWI,then proposes a hybrid gradient.The hybrid gradient combines the conventional gradient of FWI with the scattering angle weighted gradient in each inversion frequency band based on an empirical formula derived herein.Using weighted hybrid mode,we can retain some low-wavenumber components in the initial lowfrequency inversion to ensure the stability of the inversion,and use more high-wavenumber components in the high-frequency inversion to improve the convergence rate.The results of synthetic data experiment demonstrate that compared to the conventional FWI,the FWI based on the proposed hybrid gradient can effectively reduce the low-wavenumber components in the gradient under the premise of ensuring inversion stability.It also greatly enhances the convergence rate and inversion accuracy,especially in the deep part of the model.And the field marine seismic data experiment also illustrates that the FWI based on hybrid gradient(HGFWI)has good stability and adaptability.展开更多
In this paper,the study of gradient regularity for solutions of a class of elliptic problems of p-Laplace type is offered.In particular,we prove a global result concerning Lorentz-Morrey regularity of the non-homogene...In this paper,the study of gradient regularity for solutions of a class of elliptic problems of p-Laplace type is offered.In particular,we prove a global result concerning Lorentz-Morrey regularity of the non-homogeneous boundary data problem:-div((s^(2)+|▽u|^(2)p-2/2)▽u)=-div(|f|^(p-2)f)+g inΩ,u=h in■Ω,with the(sub-elliptic)degeneracy condition s∈[0,1]and with mixed data f∈L^(p)(Q;R^(n)),g∈Lp/(p-1)(Ω;R^(n))for p∈(1,n).This problem naturally arises in various applications such as dynamics of non-Newtonian fluid theory,electro-rheology,radiation of heat,plastic moulding and many others.Building on the idea of level-set inequality on fractional maximal distribution functions,it enables us to carry out a global regularity result of the solution via fractional maximal operators.Due to the significance of M_(α)and its relation with Riesz potential,estimates via fractional maximal functions allow us to bound oscillations not only for solution but also its fractional derivatives of orderα.Our approach therefore has its own interest.展开更多
Regeneration status of tree species along elevation gradient in temperate hill forest was not understood greatly.Present research examined the tree diversity and its regeneration patterns along an elevation gradient i...Regeneration status of tree species along elevation gradient in temperate hill forest was not understood greatly.Present research examined the tree diversity and its regeneration patterns along an elevation gradient in temperate hill forest,central Nepal.Data were collected from 300 sample plots within vertical elevation bands of 10,ranging from 1365 to 2450 m asl.A random sampling method was used for data collection in three seasons,winter,pre-monsoon and post monsoon seasons.Diameter at breast height(DBH)was used to broadly categorize the plant individual into trees,saplings and seedlings.The tree species richness ranged from 12 to 25 with density of 350 to 1200 individuals per hectare.Species richness of tree and sapling showed statistically significant unimodal pattern,which peaked at mid-elevation.Elevation showed a strong and positive linear correlation with the seedling density(Deviance=0.99,p<0.001)and a significant hump-shaped relationship with sapling density(Deviance=0.95,p<0.001).Similarly,elevations showed a statistically significant negative hump-shaped relationship with all trees,saplings and seedling stages(Deviances=0.89,0.87 and 0.57).The highest values of the Shannon-Wiener index and the lowest value of the Simpson index were found at mid-elevation for all growth forms.Nearly 92%of tree species were found at regenerating stage;49%in a good renewal regeneration status,32%in fair renewal regeneration,and 11%at a poor regenerating condition.Nevertheless,4%of tree species were reported as non-regenerating stages and 4%were newly introduced species.Hence,the regeneration status of the study area was considered fairly well since sapling(78.5%)>seedling(10.6%)≤mature(10.9%).Among tested environmental variables,elevation and annual mean rainfall were the most influential factors in the regeneration of tree species.展开更多
In recent years,deep learning has been the mainstream technology for fingerprint liveness detection(FLD)tasks because of its remarkable performance.However,recent studies have shown that these deep fake fingerprint de...In recent years,deep learning has been the mainstream technology for fingerprint liveness detection(FLD)tasks because of its remarkable performance.However,recent studies have shown that these deep fake fingerprint detection(DFFD)models are not resistant to attacks by adversarial examples,which are generated by the introduction of subtle perturbations in the fingerprint image,allowing the model to make fake judgments.Most of the existing adversarial example generation methods are based on gradient optimization,which is easy to fall into local optimal,resulting in poor transferability of adversarial attacks.In addition,the perturbation added to the blank area of the fingerprint image is easily perceived by the human eye,leading to poor visual quality.In response to the above challenges,this paper proposes a novel adversarial attack method based on local adaptive gradient variance for DFFD.The ridge texture area within the fingerprint image has been identified and designated as the region for perturbation generation.Subsequently,the images are fed into the targeted white-box model,and the gradient direction is optimized to compute gradient variance.Additionally,an adaptive parameter search method is proposed using stochastic gradient ascent to explore the parameter values during adversarial example generation,aiming to maximize adversarial attack performance.Experimental results on two publicly available fingerprint datasets show that ourmethod achieves higher attack transferability and robustness than existing methods,and the perturbation is harder to perceive.展开更多
We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement ti...We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements.展开更多
基金This research was funded by National Key Research and Development Program of China(No.2018YFA0605601)National Natural Science Foundation of China(No.42077417,41671042).
文摘A set of standard chronologies for tree-ring width(TRW),earlywood width(EWW)and latewood width(LWW)in Pinus tabuliformis Carr.along an altitudi-nal gradient(1450,1400,and 1350 m a.s.l.)on Baiyunshan Mountain,Central China to analyze the effect of varying temperature and precipitation on growth along the gradi-ent.Correlation analyses showed that at all three altitudes and the TRW and EWW chronologies generally had signifi-cant negative correlations with mean and maximum tem-peratures in the current April and May and with minimum temperatures in the prior July and August,but significant positive correlations with precipitation in the current May.Correlations were generally significantly negative between LWW chronologies and all temperatures in the prior July and August,indicating that the prior summer temperature had a strong lag effect on the growth of P.tabuliformis that increased with altitude.The correlation with the standard-ized precipitation evapotranspiration index(SPEI)confirmed that wet conditions in the current May promoted growth of TR and EW at all altitudes.Significant altitudinal differences were also found;at 1400 m,there were significant positive correlations between EWW chronologies and SPEI in the current April and significant negative correlations between LWW chronologies and SPEI in the current September,but these correlations were not significant at 1450 m.At 1350 m,there were also significant negative correlations between the TRW and the EWW chronologies and SPEI in the prior October and the current July and between LWW chronology and SPEI in the current August,but these cor-relations were not significant at 1400 m.Moving correlation results showed a stable response of EWW in relation to the SPEI in the current May at all three altitudes and of LWW to maximum temperature in the prior July-August at 1400 m from 2002 to 2018.The EWW chronology at 1400 m and the LWW chronology at 1450 m were identified as more suitable for climate reconstruction.These results provide a strong scientific basis for forest management decisions and climate reconstructions in Central China.
基金supported by the National Nat-ural Science Foundation of China(No.52203376)the National Key Research and Development Program of China(No.2023YFB3813200).
文摘Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.
基金This work is funded by the Magnetic Resonance Union of the Chinese Academy of Sciences(Grant No.2021gzl002)the International Partnership Program of Chinese Academy of Sciences(Grant No.182111KYSB20210014)+1 种基金the National Science Foundation of China(Grant No.52293423,Grant No.52277031)the Research and Development of Key Technologies and Equipment for Major Science and Technology Infrastructure of Development and Reform Commission of Shenzhen Municipality,China(Grant No.ZDKJ20190305002).
文摘The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic field is important for the optimal operation of cryogen-free MRI systems.In this study,we present an enhanced shielding method incorporating a regionalized stray field constraining strategy.By optimizing the constraint parameters,we could develop engineering-feasible gradient coil schemes without increasing system complexity but with the stray field intensity reduced by half.In real measurement in an integrated MRI system,the developed gradient assembly demonstrated good performance and supported to output images of excellent quality.Our findings suggested that the proposed method could potentially form a useful design paradigm for cryogen-free MRI magnets.
文摘Across a gradient belt of the Western Sichuan Plateau,geohazards have seriously limited economic and social development.According to incomplete statistics,15,673 geohazards have been recorded in the study area.In order to mitigate the threat of geohazards to human engineering activities in the region,an overall understanding of the distribution pattern of geohazards and susceptibility assessment are necessary.In this paper,a gradient belt of the Western Sichuan Plateau and its zoning criteria were defined.Subsequently,on the basis of relief amplitude,distance to faults,rainfall,and human activities,three indicators of endogenic process were introduced:Bouguer gravity anomaly gradient,vertical deformation gradient,and horizontal deformation gradient.Thereafter,the distribution patterns of geohazards were investigated through mathematical statistics and ArcGIS software.By randomly selecting 10,449 hazards,a geohazard susceptibility map was generated using the Information Value(IV)model.Finally,the IV model was validated against 5224 hazards using the Area Under Curve(AUC)method.The results show that 47.6%of the geohazards were distributed in the zone of steep slope.Geohazards showed strong responses to distance to faults,human activities,and annual rainfall.The distribution of geohazards in the gradient belt of the Western Sichuan Plateau is more sensitive to vertical internal dynamics factors(such as vertical deformation gradient and Bouguer gravity anomaly gradient)without any apparent sensitivity to horizontal internal dynamics factors.The areas of high and very-high risk account for up to 32.22%,mainly distributed in the Longmenshan and Anning River faults.According to the AUC plot,the success rate of the IV model for generating the susceptibility map is 76%.This susceptibility map and geohazard distribution pattern can provide a reference for geological disaster monitoring,preparation of post-disaster emergency measures,and town planning.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB1807700in part by the National Science Foundation of China under Grant U200120122
文摘As a mature distributed machine learning paradigm,federated learning enables wireless edge devices to collaboratively train a shared AI-model by stochastic gradient descent(SGD).However,devices need to upload high-dimensional stochastic gradients to edge server in training,which cause severe communication bottleneck.To address this problem,we compress the communication by sparsifying and quantizing the stochastic gradients of edge devices.We first derive a closed form of the communication compression in terms of sparsification and quantization factors.Then,the convergence rate of this communicationcompressed system is analyzed and several insights are obtained.Finally,we formulate and deal with the quantization resource allocation problem for the goal of minimizing the convergence upper bound,under the constraint of multiple-access channel capacity.Simulations show that the proposed scheme outperforms the benchmarks.
基金financial support from the National Natural Science Foundation of China(“Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers”,Grant No.51673162)Startup Grant of CityU(“Laboratory of Wearable Materials for Healthcare”,Grant No.9380116).CityU PhD Scholarship.
文摘Thermoregulatory textiles,leveraging high-emissivity structural materials,have arisen as a promising candidate for personal cooling management;however,their advancement has been hindered by the underperformed water moisture transportation capacity,which impacts on their thermophysiological comfort.Herein,we designed a wettability-gradient-induced-diode(WGID)membrane achieving by MXene-engineered electrospun technology,which could facilitate heat dissipation and moisture-wicking transportation.As a result,the obtained WGID membrane could obtain a cooling temperature of 1.5℃ in the“dry”state,and 7.1℃ in the“wet”state,which was ascribed to its high emissivity of 96.40%in the MIR range,superior thermal conductivity of 0.3349 W m^(-1) K^(-1)(based on radiation-and conduction-controlled mechanisms),and unidirectional moisture transportation property.The proposed design offers an approach for meticulously engineering electrospun membranes with enhanced heat dissipation and moisture transportation,thereby paving the way for developing more efficient and comfortable thermoregulatory textiles in a high-humidity microenvironment.
基金The financial support from the National Natural Science Foundation of China (32201179)Guangdong Basic and Applied Basic Research Foundation (2020A1515110126 and 2021A1515010130)+1 种基金the Fundamental Research Funds for the Central Universities (N2319005)Ningbo Science and Technology Major Project (2021Z027) is gratefully acknowledged。
文摘The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sensing actuated gradient hydrogel that combines ultrafast actuation and high sensitivity for remote interaction with robotic hand. The gradient network structure, achieved through a wettability difference method involving the rapid precipitation of MoO_(2) nanosheets, introduces hydrophilic disparities between two sides within hydrogel. This distinctive approach bestows the hydrogel with ultrafast thermo-responsive actuation(21° s^(-1)) and enhanced photothermal efficiency(increase by 3.7 ℃ s^(-1) under 808 nm near-infrared). Moreover, the local cross-linking of sodium alginate with Ca^(2+) endows the hydrogel with programmable deformability and information display capabilities. Additionally, the hydrogel exhibits high sensitivity(gauge factor 3.94 within a wide strain range of 600%), fast response times(140 ms) and good cycling stability. Leveraging these exceptional properties, we incorporate the hydrogel into various soft actuators, including soft gripper, artificial iris, and bioinspired jellyfish, as well as wearable electronics capable of precise human motion and physiological signal detection. Furthermore, through the synergistic combination of remarkable actuation and sensitivity, we realize a self-sensing touch bioinspired tongue. Notably, by employing quantitative analysis of actuation-sensing, we realize remote interaction between soft-hard robot via the Internet of Things. The multifunctional self-sensing actuated gradient hydrogel presented in this study provides a new insight for advanced somatosensory materials, self-feedback intelligent soft robots and human–machine interactions.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0301)NationalNatural Science Foundation of China(32271886 and 42271074).
文摘Temporal changes in the relationship between tree growth and climate have been observed in numerous forests across the world.The patterns and the possible regu-lators(e.g.,forest community structure)of such changes are,however,not well understood.A vegetation survey and analyses of growth-climate relationships for Abies georgei var.Smithii(Smith fir)forests were carried along an altitudi-nal gradient from 3600 to 4200 m on Meili Snow Mountain,southeastern Tibetan Plateau.The results showed that the associations between growth and temperature have declined since the 1970s over the whole transect,while response to standardized precipitation-evapotranspiration indices(SPEI)strengthened in the mid-and lower-transect.Comparison between growth and vegetation data showed that tree growth was more sensitive to drought in stands with higher species richness and greater shrub cover.Drought stress on growth may be increased by heavy competition from shrub and herb layers.These results show the non-stationary nature of tree growth-climate associations and the linkage to for-est community structures.Vegetation components should be considered in future modeling and forecasting of forest dynamics in relation to climate changes.
基金supported by the Natural Science Foundation of Guangdong Province of China(2023A1515010882)the Large Scientific Facility Open Subject of Songshan Lake,Dongguan,Guangdong Province of China(KFKT2022B06)+2 种基金the Singapore Ministry of Education Academic Research Fund Tier 2(MOE2015-T2-1-016,MOE2018-T2-1-019,and MoE T1 R-284-000-196-114)the Singapore National Research Foundation(NRF-CRP10-2012-02)supported from SSLS via National University of Singapore Core Support(C-380-003-003-001).
文摘Strain gradient is a normal phenomenon around a heterostructural interface in ultrathin film,and it is important to determine its effect on magnetic interactions to understand interfacial coupling.In this work,ultrathin Pr_(0.67)Sr_(0.33)MnO_(3)(PSMO)films on different substrates are studied.For PSMO film under different in-plane strain conditions,the saturated magnetization and Curie temperature can be qualitatively explained by double-exchange interaction and the Jahn-Teller distortion.However,the difference in the saturated magnetization with zero field cooling and 5 T field cooling is proportional to the strain gradient.Strain-gradient-induced structural disorder is proposed to enhance phonon-electron antiferromagnetic interactions and the corresponding antiferromagnetic-to-ferromagnetic phase transition via a strong magnetic field during the field cooling process.A non-monotonous structural transition of the MnO_(6) octahedral rotation can enlarge the strain gradient in PSMO film on a SrTiO_(3) substrate.This work demonstrates the existence of the flexomagnetic effect in ultrathin manganite film,which should be applicable to other complex oxide systems.
基金supported by the National Natural Science Foundation of China(22078281)。
文摘The isolation of minor components from complex natural product matrices presents a significant challenge in the field of purification science due to their low concentrations and the presence of structurally similar compounds.This study introduces an optimized twin-column recycling chromatography method for the efficient and simultaneous purification of these elusive constituents.By introducing water at a small flowing rate between the twin columns,a step solvent gradient is created,by which the leading edge of concentration band would migrate at a slower rate than the trailing edge as it flowing from the upstream to downstream column.Hence,the band broadening is counterbalanced,resulting in an enrichment effect for those minor components in separation process.Herein,two target substances,which showed similar peak position in high performance liquid chromatography(HPLC)and did not exceed 1.8%in crude paclitaxel were selected as target compounds for separation.By using the twin-column recycling chromatography with a step solvent gradient,a successful purification was achieved in getting the two with the purity almost 100%.We suggest this method is suitable for the separation of most components in natural produces,which shows higher precision and recovery rate compared with the common lab-operated separation ways for natural products(thin-layer chromatography and prep-HPLC).
基金the National Natural Science Foundation of China(61922063,62273255,62150026)in part by the Shanghai International Science and Technology Cooperation Project(21550760900,22510712000)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities。
文摘Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is used to evaluate the policy.In the policy improvement process,the policy gradient based method is employed.
文摘Species richness generally decreases with increasing latitude,a biodiversity gradient that has long been considered as one of the few laws in ecology.This latitudinal diversity gradient has been observed in many major groups of organisms.In plants,the latitudinal diversity gradient has been observed in vascular plants,angiosperms,ferns,and liverworts.However,a conspicuous latitudinal diversity gradient in mosses at a global or continental scale has not been observed until now.Here,we analyze a comprehensive data set including moss species in each band of 20° in latitude worldwide.Our results show that moss species richness decreases strongly with increasing latitude,regardless of whether the globe is considered as a whole or different longitudinal segments(e.g.,Old World versus New World) are considered separately.This result holds when variation in area size among latitudinal bands is taken into account.Pearson's correlation coefficient between latitude and species richness is-0.99 for both the Northern and Southern Hemispheres.Because bryophytes are an extant lineage of early land plants and because mosses not only include most of extant species of bryophytes but also are important constituents of most terrestrial ecosystems,understanding geographic patterns of mosses is particularly important The finding of our study fills a critical knowledge gap.
基金funded jointly by the National Nature Science Funds of China(No.42274010)the Fundamental Research Funds for the Central Universities(Nos.2023000540,2023000407).
文摘The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.
基金supported by the National Natural Science Foundation of China(No.U19A2099)the Open Fund for Hubei Provincial Key Laboratory of Advanced Aerospace Power Technology,China(No.DLJJ2103007)the Hunan Graduate Research Innovation Project,China(No.CX20220097)。
文摘To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.The effects of different infiltrant laying methods on the microstructure and ablative properties of Zr-based ultrahigh-temperature gradient composites were investigated.The results showed that the gradient structure of the Zr-based ultrahigh-temperature gradient composites differed when the composition ratio of the infiltrant was changed.When the thicknesses of the Zr/Mo/Si layers were 6/4/12 mm and 8/2/12 mm,the SiMoZrC solid solution content in the samples increased and decreased along the infiltration direction,respectively.The gradient samples were ablated in an oxyacetylene flame at 3000°C for 40 s.The ablation resistance of the sample was the highest when the infiltrant was a powder and the thickness of the Zr/Mo/Si layer was 6/4/12 mm.
基金funded by the National Key Research and Development Program of China(2023YFD150050504)the Key Research and Development Program of Shandong Province,China(2022SFGC0301)the Strategic Priority Research Program of the Chinese Academy of Sciences-Development and Application Technology of Special Package Fertilizer for Improving Albic Soil(XDA28100203)。
文摘Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients.
基金jointly supported by Young Scientists Cultivation Fund Project of Harbin Engineering University(79000013/003)the Mount Taishan Industrial Leading Talent Project+1 种基金the Great and Special Project under Grant KJGG-2022-0104 of CNOOC Limitedthe National Natural Science Foundation of China(42006064,42106070,42074138)。
文摘The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far away from the real velocity model,an excessive number of low-wavenumber components in the gradient will also reduce the convergence rate and inversion accuracy.To solve this problem,this paper firstly derives a formula of scattering angle weighted gradient in FWI,then proposes a hybrid gradient.The hybrid gradient combines the conventional gradient of FWI with the scattering angle weighted gradient in each inversion frequency band based on an empirical formula derived herein.Using weighted hybrid mode,we can retain some low-wavenumber components in the initial lowfrequency inversion to ensure the stability of the inversion,and use more high-wavenumber components in the high-frequency inversion to improve the convergence rate.The results of synthetic data experiment demonstrate that compared to the conventional FWI,the FWI based on the proposed hybrid gradient can effectively reduce the low-wavenumber components in the gradient under the premise of ensuring inversion stability.It also greatly enhances the convergence rate and inversion accuracy,especially in the deep part of the model.And the field marine seismic data experiment also illustrates that the FWI based on hybrid gradient(HGFWI)has good stability and adaptability.
基金supported by Ministry of Education and Training(Vietnam),under grant number B2023-SPS-01。
文摘In this paper,the study of gradient regularity for solutions of a class of elliptic problems of p-Laplace type is offered.In particular,we prove a global result concerning Lorentz-Morrey regularity of the non-homogeneous boundary data problem:-div((s^(2)+|▽u|^(2)p-2/2)▽u)=-div(|f|^(p-2)f)+g inΩ,u=h in■Ω,with the(sub-elliptic)degeneracy condition s∈[0,1]and with mixed data f∈L^(p)(Q;R^(n)),g∈Lp/(p-1)(Ω;R^(n))for p∈(1,n).This problem naturally arises in various applications such as dynamics of non-Newtonian fluid theory,electro-rheology,radiation of heat,plastic moulding and many others.Building on the idea of level-set inequality on fractional maximal distribution functions,it enables us to carry out a global regularity result of the solution via fractional maximal operators.Due to the significance of M_(α)and its relation with Riesz potential,estimates via fractional maximal functions allow us to bound oscillations not only for solution but also its fractional derivatives of orderα.Our approach therefore has its own interest.
基金the University grant Commission, Kathmandu Nepal for partial financial assistance (Sand T 23-2076/77)
文摘Regeneration status of tree species along elevation gradient in temperate hill forest was not understood greatly.Present research examined the tree diversity and its regeneration patterns along an elevation gradient in temperate hill forest,central Nepal.Data were collected from 300 sample plots within vertical elevation bands of 10,ranging from 1365 to 2450 m asl.A random sampling method was used for data collection in three seasons,winter,pre-monsoon and post monsoon seasons.Diameter at breast height(DBH)was used to broadly categorize the plant individual into trees,saplings and seedlings.The tree species richness ranged from 12 to 25 with density of 350 to 1200 individuals per hectare.Species richness of tree and sapling showed statistically significant unimodal pattern,which peaked at mid-elevation.Elevation showed a strong and positive linear correlation with the seedling density(Deviance=0.99,p<0.001)and a significant hump-shaped relationship with sapling density(Deviance=0.95,p<0.001).Similarly,elevations showed a statistically significant negative hump-shaped relationship with all trees,saplings and seedling stages(Deviances=0.89,0.87 and 0.57).The highest values of the Shannon-Wiener index and the lowest value of the Simpson index were found at mid-elevation for all growth forms.Nearly 92%of tree species were found at regenerating stage;49%in a good renewal regeneration status,32%in fair renewal regeneration,and 11%at a poor regenerating condition.Nevertheless,4%of tree species were reported as non-regenerating stages and 4%were newly introduced species.Hence,the regeneration status of the study area was considered fairly well since sapling(78.5%)>seedling(10.6%)≤mature(10.9%).Among tested environmental variables,elevation and annual mean rainfall were the most influential factors in the regeneration of tree species.
基金supported by the National Natural Science Foundation of China under Grant(62102189,62122032,61972205)the National Social Sciences Foundation of China under Grant 2022-SKJJ-C-082+2 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20200807NUDT Scientific Research Program under Grant(JS21-4,ZK21-43)Guangdong Natural Science Funds for Distinguished Young Scholar under Grant 2023B1515020041.
文摘In recent years,deep learning has been the mainstream technology for fingerprint liveness detection(FLD)tasks because of its remarkable performance.However,recent studies have shown that these deep fake fingerprint detection(DFFD)models are not resistant to attacks by adversarial examples,which are generated by the introduction of subtle perturbations in the fingerprint image,allowing the model to make fake judgments.Most of the existing adversarial example generation methods are based on gradient optimization,which is easy to fall into local optimal,resulting in poor transferability of adversarial attacks.In addition,the perturbation added to the blank area of the fingerprint image is easily perceived by the human eye,leading to poor visual quality.In response to the above challenges,this paper proposes a novel adversarial attack method based on local adaptive gradient variance for DFFD.The ridge texture area within the fingerprint image has been identified and designated as the region for perturbation generation.Subsequently,the images are fed into the targeted white-box model,and the gradient direction is optimized to compute gradient variance.Additionally,an adaptive parameter search method is proposed using stochastic gradient ascent to explore the parameter values during adversarial example generation,aiming to maximize adversarial attack performance.Experimental results on two publicly available fingerprint datasets show that ourmethod achieves higher attack transferability and robustness than existing methods,and the perturbation is harder to perceive.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2020MF119 and ZR2020MA082)the National Natural Science Foundation of China(Grant No.62002208)the National Key Research and Development Program of China(Grant No.2018YFB0504302).
文摘We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements.