A pressure gradient discontinuous finite element formulation for the compressible Navier-Stokes equations is derived based on local projections. The resulting finite element formulation is stable and uniquely solvable...A pressure gradient discontinuous finite element formulation for the compressible Navier-Stokes equations is derived based on local projections. The resulting finite element formulation is stable and uniquely solvable without requiring a B-B stability condition. An error estimate is Obtained.展开更多
In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient proje...In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.展开更多
In this paper,we establish a unified framework to study the almost sure global convergence and the expected convergencerates of a class ofmini-batch stochastic(projected)gradient(SG)methods,including two popular types...In this paper,we establish a unified framework to study the almost sure global convergence and the expected convergencerates of a class ofmini-batch stochastic(projected)gradient(SG)methods,including two popular types of SG:stepsize diminished SG and batch size increased SG.We also show that the standard variance uniformly bounded assumption,which is frequently used in the literature to investigate the convergence of SG,is actually not required when the gradient of the objective function is Lipschitz continuous.Finally,we show that our framework can also be used for analyzing the convergence of a mini-batch stochastic extragradient method for stochastic variational inequality.展开更多
In this work we consider an extension of the classical scalar-valued projected gradient method for multiobjective problems on convex sets.As in Fazzio et al.(Optim Lett 13:1365-1379,2019)a parameter which controls the...In this work we consider an extension of the classical scalar-valued projected gradient method for multiobjective problems on convex sets.As in Fazzio et al.(Optim Lett 13:1365-1379,2019)a parameter which controls the step length is considered and an updating rule based on the spectral gradient method from the scalar case is proposed.In the present paper,we consider an extension of the traditional nonmonotone approach of Grippo et al.(SIAM J Numer Anal 23:707-716,1986)based on the maximum of some previous function values as suggested in Mita et al.(J Glob Optim 75:539-559,2019)for unconstrained multiobjective optimization problems.We prove the accumulation points of sequences generated by the proposed algorithm,if they exist,are stationary points of the original problem.Numerical experiments are reported.展开更多
In this paper, we give some convergence results on the gradient projection method with exact stepsize rule for solving the minimization problem with convex constraints. Especially, we show that if the objective functi...In this paper, we give some convergence results on the gradient projection method with exact stepsize rule for solving the minimization problem with convex constraints. Especially, we show that if the objective function is convex and its gradient is Lipschitz continuous, then the whole sequence of iterations produced by this method with bounded exact stepsizes converges to a solution of the concerned problem.展开更多
The present work focused on the application of innovative damping technologies in order to improve railway vehicle performances in terms of dynamic stability and comfort. As a benchmark case-study, the secondary sus- ...The present work focused on the application of innovative damping technologies in order to improve railway vehicle performances in terms of dynamic stability and comfort. As a benchmark case-study, the secondary sus- pension stage was selected and different control techniques were investigated, such as skyhook, dynamic compensation, and sliding mode control. The final aim was to investigate which control schemes are suitable for optimal exploitation of the non-linear behavior of the actuators. The performance improvement achieved by adoption of the semi-active dampers on a standard high-speed train was evaluated in terms of passenger comfort. Different control strategies have been investigated by comparing a simple SISO (single input single output) regulator based on the skyhook damper ap- proach with a centralized regulator. The centralized regulator allows for the estimation of a near optimal set of control forces that minimize car-body accelerations with respect to constraints imposed by limited performance of semi-active actuators. Simulation results show that best results is obtained using a mixed approach that considers the simultaneous applications of model based and feedback compensation control terms.展开更多
In order to overcome the shortcomings of the previous obstacle avoidance algorithms,an obstacle avoidance algorithm applicable to multiple mobile obstacles was proposed.The minimum prediction distance between obstacle...In order to overcome the shortcomings of the previous obstacle avoidance algorithms,an obstacle avoidance algorithm applicable to multiple mobile obstacles was proposed.The minimum prediction distance between obstacles and a manipulator was obtained according to the states of obstacles and transformed to escape velocity of the corresponding link of the manipulator.The escape velocity was introduced to the gradient projection method to obtain the joint velocity of the manipulator so as to complete the obstacle avoidance trajectory planning.A7-DOF manipulator was used in the simulation,and the results verified the effectiveness of the algorithm.展开更多
This study developed a user equilibrium traffic assignment model based on trip-chains with flexible activity scheduling order and derived the corresponding optimality conditions. We based on the gradient projection me...This study developed a user equilibrium traffic assignment model based on trip-chains with flexible activity scheduling order and derived the corresponding optimality conditions. We based on the gradient projection method to develop a solution algorithm, the accuracy of which was verified using the test network of UTown. This model could be used to estimate the transportation demands with and without activities scheduling restriction between OD (origin-destination) pairs based on trip-chains, as well as based on trips. Thus, the proposed model is more generalization than conventional trip based or trip-chain based traffic assignment models.展开更多
A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. W...A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. With the Lanczos process the OAP creates a sequence of mutually orthogonal vectors, on the basis of which the projections of the unknown vectors are easily obtained, and thus the approximations to the unknown vectors can be simply constructed by a combination of these projections. This method is an application of the accumulated projection technique proposed recently by the authors of this paper, and can be regarded as a match of conjugate gradient method(CG) in its nature since both the CG and the OAP can be regarded as iterative methods, too. Unlike the CG method which can be only used to solve linear systems with symmetric positive definite coefficient matrices, the OAP can be used to handle systems with indefinite symmetric matrices. Unlike classical Krylov subspace methods which usually ignore the issue of loss of orthogonality, OAP uses an effective approach to detect the loss of orthogonality and a restart strategy is used to handle the loss of orthogonality.Numerical experiments are presented to demonstrate the efficiency of the OAP.展开更多
基金Project supported by the Science and Technology Foundation of Sichuan Province (No.05GG006- 006-2)the Research Fund for the Introducing Intelligence of University of Electronic Science and Technology of China
文摘A pressure gradient discontinuous finite element formulation for the compressible Navier-Stokes equations is derived based on local projections. The resulting finite element formulation is stable and uniquely solvable without requiring a B-B stability condition. An error estimate is Obtained.
文摘In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.
基金the National Natural Science Foundation of China(Nos.11871135 and 11801054)the Fundamental Research Funds for the Central Universities(No.DUT19K46)。
文摘In this paper,we establish a unified framework to study the almost sure global convergence and the expected convergencerates of a class ofmini-batch stochastic(projected)gradient(SG)methods,including two popular types of SG:stepsize diminished SG and batch size increased SG.We also show that the standard variance uniformly bounded assumption,which is frequently used in the literature to investigate the convergence of SG,is actually not required when the gradient of the objective function is Lipschitz continuous.Finally,we show that our framework can also be used for analyzing the convergence of a mini-batch stochastic extragradient method for stochastic variational inequality.
基金ANPCyT(Nos.PICT 2016-0921 and PICT 2019-02172),Argentina.
文摘In this work we consider an extension of the classical scalar-valued projected gradient method for multiobjective problems on convex sets.As in Fazzio et al.(Optim Lett 13:1365-1379,2019)a parameter which controls the step length is considered and an updating rule based on the spectral gradient method from the scalar case is proposed.In the present paper,we consider an extension of the traditional nonmonotone approach of Grippo et al.(SIAM J Numer Anal 23:707-716,1986)based on the maximum of some previous function values as suggested in Mita et al.(J Glob Optim 75:539-559,2019)for unconstrained multiobjective optimization problems.We prove the accumulation points of sequences generated by the proposed algorithm,if they exist,are stationary points of the original problem.Numerical experiments are reported.
基金The research was in part supported by the National Natural Science Foundation of China (70471002,10571106) NCET040098.
文摘In this paper, we give some convergence results on the gradient projection method with exact stepsize rule for solving the minimization problem with convex constraints. Especially, we show that if the objective function is convex and its gradient is Lipschitz continuous, then the whole sequence of iterations produced by this method with bounded exact stepsizes converges to a solution of the concerned problem.
文摘The present work focused on the application of innovative damping technologies in order to improve railway vehicle performances in terms of dynamic stability and comfort. As a benchmark case-study, the secondary sus- pension stage was selected and different control techniques were investigated, such as skyhook, dynamic compensation, and sliding mode control. The final aim was to investigate which control schemes are suitable for optimal exploitation of the non-linear behavior of the actuators. The performance improvement achieved by adoption of the semi-active dampers on a standard high-speed train was evaluated in terms of passenger comfort. Different control strategies have been investigated by comparing a simple SISO (single input single output) regulator based on the skyhook damper ap- proach with a centralized regulator. The centralized regulator allows for the estimation of a near optimal set of control forces that minimize car-body accelerations with respect to constraints imposed by limited performance of semi-active actuators. Simulation results show that best results is obtained using a mixed approach that considers the simultaneous applications of model based and feedback compensation control terms.
基金Supported by Ministeral Level Advanced Research Foundation(65822576)Beijing Municipal Education Commission(KM201310858004,KM201310858001)
文摘In order to overcome the shortcomings of the previous obstacle avoidance algorithms,an obstacle avoidance algorithm applicable to multiple mobile obstacles was proposed.The minimum prediction distance between obstacles and a manipulator was obtained according to the states of obstacles and transformed to escape velocity of the corresponding link of the manipulator.The escape velocity was introduced to the gradient projection method to obtain the joint velocity of the manipulator so as to complete the obstacle avoidance trajectory planning.A7-DOF manipulator was used in the simulation,and the results verified the effectiveness of the algorithm.
文摘This study developed a user equilibrium traffic assignment model based on trip-chains with flexible activity scheduling order and derived the corresponding optimality conditions. We based on the gradient projection method to develop a solution algorithm, the accuracy of which was verified using the test network of UTown. This model could be used to estimate the transportation demands with and without activities scheduling restriction between OD (origin-destination) pairs based on trip-chains, as well as based on trips. Thus, the proposed model is more generalization than conventional trip based or trip-chain based traffic assignment models.
基金supported by National Natural Science Foundation of China (Grant Nos. 91430108 and 11171251)the Major Program of Tianjin University of Finance and Economics (Grant No. ZD1302)
文摘A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. With the Lanczos process the OAP creates a sequence of mutually orthogonal vectors, on the basis of which the projections of the unknown vectors are easily obtained, and thus the approximations to the unknown vectors can be simply constructed by a combination of these projections. This method is an application of the accumulated projection technique proposed recently by the authors of this paper, and can be regarded as a match of conjugate gradient method(CG) in its nature since both the CG and the OAP can be regarded as iterative methods, too. Unlike the CG method which can be only used to solve linear systems with symmetric positive definite coefficient matrices, the OAP can be used to handle systems with indefinite symmetric matrices. Unlike classical Krylov subspace methods which usually ignore the issue of loss of orthogonality, OAP uses an effective approach to detect the loss of orthogonality and a restart strategy is used to handle the loss of orthogonality.Numerical experiments are presented to demonstrate the efficiency of the OAP.