This paper addresses the source seeking problems for an autonomous underwater vehicle(AUV) with the estimated gradients. The AUV is embedded with multiple sensors, which are only able to detect the signal strengths ...This paper addresses the source seeking problems for an autonomous underwater vehicle(AUV) with the estimated gradients. The AUV is embedded with multiple sensors, which are only able to detect the signal strengths of the source with unknown distribution. To resolve this challenge,a sensor configuration is explicitly designed as a semicircle to estimate gradients of the signal field.Then, a controller is obtained via the estimated gradients to drive the AUV to approach the source.Moreover, an upper bound for the localization error is provided in terms of the radius of the semicircle and the signal distribution. Finally, the authors include a simulation example by applying the strategy to a Remote Environmental Monitoring Unit S(REMUS) for seeking the deepest point of a region of seabed in the South China Sea.展开更多
基金supported by the National Key Research and Development Program of China under Grant No.2016YFC0300801the National Natural Science Foundation of China under Grants Nos.41576101 and 41427806
文摘This paper addresses the source seeking problems for an autonomous underwater vehicle(AUV) with the estimated gradients. The AUV is embedded with multiple sensors, which are only able to detect the signal strengths of the source with unknown distribution. To resolve this challenge,a sensor configuration is explicitly designed as a semicircle to estimate gradients of the signal field.Then, a controller is obtained via the estimated gradients to drive the AUV to approach the source.Moreover, an upper bound for the localization error is provided in terms of the radius of the semicircle and the signal distribution. Finally, the authors include a simulation example by applying the strategy to a Remote Environmental Monitoring Unit S(REMUS) for seeking the deepest point of a region of seabed in the South China Sea.