鉴于Single Shot Multibox Detector(SSD)算法对中小目标检测时会出现漏检甚至错检的情况,提出一种改进的SSD目标检测算法,以提高中小目标检测的准确性.运用Gradient-weighted Class Activation Mapping(Grad-CAM)技术对检测过程中的细...鉴于Single Shot Multibox Detector(SSD)算法对中小目标检测时会出现漏检甚至错检的情况,提出一种改进的SSD目标检测算法,以提高中小目标检测的准确性.运用Gradient-weighted Class Activation Mapping(Grad-CAM)技术对检测过程中的细节作可视化处理,并以类激活图的形式呈现各检测层细节,分析各检测层的类激活图发现SSD算法中待检测目标的错检以及中小目标的漏检现象与回归损失函数相关.据此,采用Kullback-Leibler(KL)边框回归损失策略,利用Non Maximum Suppression(NMS)算法输出最终预测框.实验结果表明,改进算法相较于已有检测算法具有更高的准确率以及稳定性.展开更多
有效地分析处理癫痫脑电信号并对其准确分类可以进一步完善癫痫检测问题。因此,各种深度学习方法逐渐应用到该问题中,如使用BiLSTM模型对癫痫脑电的一维时间序列数据进行处理。为进一步提高癫痫脑电分类的准确率,本文将癫痫脑电的一维...有效地分析处理癫痫脑电信号并对其准确分类可以进一步完善癫痫检测问题。因此,各种深度学习方法逐渐应用到该问题中,如使用BiLSTM模型对癫痫脑电的一维时间序列数据进行处理。为进一步提高癫痫脑电分类的准确率,本文将癫痫脑电的一维时间序列数据转换为二维图像,使用EfficientNetV2模型来实现癫痫检测的二分类。同时,引入梯度加权类激活映射(Gradient⁃weighted class activation mapping,Grad⁃CAM)对二维图像分类进行可视化分析。对德国伯恩大学脑电癫痫脑电信号数据集的预处理版本进行分类实验,EfficientNetV2模型的准确率达到了98.69%,优于BiLSTM模型。结果表明,EfficientNetV2模型可以有效通过二维脑电图像实现癫痫脑电分类,而且分类准确率更高。展开更多
文摘鉴于Single Shot Multibox Detector(SSD)算法对中小目标检测时会出现漏检甚至错检的情况,提出一种改进的SSD目标检测算法,以提高中小目标检测的准确性.运用Gradient-weighted Class Activation Mapping(Grad-CAM)技术对检测过程中的细节作可视化处理,并以类激活图的形式呈现各检测层细节,分析各检测层的类激活图发现SSD算法中待检测目标的错检以及中小目标的漏检现象与回归损失函数相关.据此,采用Kullback-Leibler(KL)边框回归损失策略,利用Non Maximum Suppression(NMS)算法输出最终预测框.实验结果表明,改进算法相较于已有检测算法具有更高的准确率以及稳定性.
文摘深度学习近年来在故障诊断领域受到广泛应用,但基于深度学习的故障诊断模型缺乏工程上的物理解释性,难以保证其故障诊断结果的稳定性。以轴承为例,建立了以小波时频图像为故障诊断依据的卷积神经网络模型(convolutional neural network,CNN),提出了一种基于梯度加权类激活热力图(gradient-weighted class activation map,Grad-CAM)的网络模型鲁棒性分析方法,并利用美国凯斯西储大学(Case Western Reserve University,CWRU)轴承数据集进行验证。首先,将故障直径轴承数据以不同方式混合并训练大、小多个模型。其次,利用Grad-CAM方法,建立时频区域与故障模式之间的联系。最后,利用其他工况下的轴承故障数据,以及含噪数据进行测试,并根据结果结合模型最注重的时频区域进行分析。结果表明,基于深度学习的轴承故障诊断模型在参数较少时更加注重低频区域,并能使其具有更好的鲁棒性。
文摘有效地分析处理癫痫脑电信号并对其准确分类可以进一步完善癫痫检测问题。因此,各种深度学习方法逐渐应用到该问题中,如使用BiLSTM模型对癫痫脑电的一维时间序列数据进行处理。为进一步提高癫痫脑电分类的准确率,本文将癫痫脑电的一维时间序列数据转换为二维图像,使用EfficientNetV2模型来实现癫痫检测的二分类。同时,引入梯度加权类激活映射(Gradient⁃weighted class activation mapping,Grad⁃CAM)对二维图像分类进行可视化分析。对德国伯恩大学脑电癫痫脑电信号数据集的预处理版本进行分类实验,EfficientNetV2模型的准确率达到了98.69%,优于BiLSTM模型。结果表明,EfficientNetV2模型可以有效通过二维脑电图像实现癫痫脑电分类,而且分类准确率更高。