Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,hi...Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.展开更多
The semantic segmentation of very high spatial resolution remote sensing images is difficult due to the complexity of interpreting the interactions between the objects in the scene. Indeed, effective segmentation requ...The semantic segmentation of very high spatial resolution remote sensing images is difficult due to the complexity of interpreting the interactions between the objects in the scene. Indeed, effective segmentation requires considering spatial local context and long-term dependencies. To address this problem, the proposed approach is inspired by the MAC-UNet network which is an extension of U-Net, densely connected combined with channel attention. The advantages of this solution are as follows: 4) The new model introduces a new attention called propagate attention to build an attention-based encoder. 2) The fusion of multi-scale information is achieved by a weighted linear combination of the attentions whose coefficients are learned during the training phase. 3) Introducing in the decoder, the Spatial-Channel-Global-Local block which is an attention layer that uniquely combines channel attention and spatial attention locally and globally. The performances of the model are evaluated on 2 datasets WHDLD and DLRSD and show results of mean intersection over union (mIoU) index in progress between 1.54% and 10.47% for DLRSD and between 1.04% and 4.37% for WHDLD compared with the most efficient algorithms with attention mechanisms like MAU-Net and transformers like TMNet.展开更多
Object detection has made a significant leap forward in recent years.However,the detection of small objects continues to be a great difficulty for various reasons,such as they have a very small size and they are susce...Object detection has made a significant leap forward in recent years.However,the detection of small objects continues to be a great difficulty for various reasons,such as they have a very small size and they are susceptible to missed detection due to background noise.Additionally,small object information is affected due to the downsampling operations.Deep learning-based detection methods have been utilized to address the challenge posed by small objects.In this work,we propose a novel method,the Multi-Convolutional Block Attention Network(MCBAN),to increase the detection accuracy of minute objects aiming to overcome the challenge of information loss during the downsampling process.The multi-convolutional attention block(MCAB);channel attention and spatial attention module(SAM)that make up MCAB,have been crafted to accomplish small object detection with higher precision.We have carried out the experiments on the Karlsruhe Institute of Technology and Toyota Technological Institute(KITTI)and Pattern Analysis,Statical Modeling and Computational Learning(PASCAL)Visual Object Classes(VOC)datasets and have followed a step-wise process to analyze the results.These experiment results demonstrate that significant gains in performance are achieved,such as 97.75%for KITTI and 88.97%for PASCAL VOC.The findings of this study assert quite unequivocally the fact that MCBAN is much more efficient in the small object detection domain as compared to other existing approaches.展开更多
Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know...Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.展开更多
For the problems of complex model structure and too many training parameters in facial expression recognition algorithms,we proposed a residual network structure with a multi-headed channel attention(MCA)module.The mi...For the problems of complex model structure and too many training parameters in facial expression recognition algorithms,we proposed a residual network structure with a multi-headed channel attention(MCA)module.The migration learning algorithm is used to pre-train the convolutional layer parameters and mitigate the overfitting caused by the insufficient number of training samples.The designed MCA module is integrated into the ResNet18 backbone network.The attention mechanism highlights important information and suppresses irrelevant information by assigning different coefficients or weights,and the multi-head structure focuses more on the local features of the pictures,which improves the efficiency of facial expression recognition.Experimental results demonstrate that the model proposed in this paper achieves excellent recognition results in Fer2013,CK+and Jaffe datasets,with accuracy rates of 72.7%,98.8%and 93.33%,respectively.展开更多
The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conven...The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s.展开更多
Alzheimer’s disease(AD)is a complex,progressive neurodegenerative disorder.The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clin...Alzheimer’s disease(AD)is a complex,progressive neurodegenerative disorder.The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clinical practice.In this study,we introduce an advanced diagnostic methodology rooted in theMed-3D transfermodel and enhanced with an attention mechanism.We aim to improve the precision of AD diagnosis and facilitate its early identification.Initially,we employ a spatial normalization technique to address challenges like clarity degradation and unsaturation,which are commonly observed in imaging datasets.Subsequently,an attention mechanism is incorporated to selectively focus on the salient features within the imaging data.Building upon this foundation,we present the novelMed-3D transfermodel,designed to further elucidate and amplify the intricate features associated withADpathogenesis.Our proposedmodel has demonstrated promising results,achieving a classification accuracy of 92%.To emphasize the robustness and practicality of our approach,we introduce an adaptive‘hot-updating’auxiliary diagnostic system.This system not only enables continuous model training and optimization but also provides a dynamic platform to meet the real-time diagnostic and therapeutic demands of AD.展开更多
This research developed a hybrid position-channel network (named PCNet) through incorporating newly designed channel and position attention modules into U-Net to alleviate the crack discontinuity problem in channel an...This research developed a hybrid position-channel network (named PCNet) through incorporating newly designed channel and position attention modules into U-Net to alleviate the crack discontinuity problem in channel and spatial dimensions. In PCNet, the U-Net is used as a baseline to extract informative spatial and channel-wise features from shield tunnel lining crack images. A channel and a position attention module are designed and embedded after each convolution layer of U-Net to model the feature interdependencies in channel and spatial dimensions. These attention modules can make the U-Net adaptively integrate local crack features with their global dependencies. Experiments were conducted utilizing the dataset based on the images from Shanghai metro shield tunnels. The results validate the effectiveness of the designed channel and position attention modules, since they can individually increase balanced accuracy (BA) by 11.25% and 12.95%, intersection over union (IoU) by 10.79% and 11.83%, and F1 score by 9.96% and 10.63%, respectively. In comparison with the state-of-the-art models (i.e. LinkNet, PSPNet, U-Net, PANet, and Mask R–CNN) on the testing dataset, the proposed PCNet outperforms others with an improvement of BA, IoU, and F1 score owing to the implementation of the channel and position attention modules. These evaluation metrics indicate that the proposed PCNet presents refined crack segmentation with improved performance and is a practicable approach to segment shield tunnel lining cracks in field practice.展开更多
Visual question answering(VQA)has attracted more and more attention in computer vision and natural language processing.Scholars are committed to studying how to better integrate image features and text features to ach...Visual question answering(VQA)has attracted more and more attention in computer vision and natural language processing.Scholars are committed to studying how to better integrate image features and text features to achieve better results in VQA tasks.Analysis of all features may cause information redundancy and heavy computational burden.Attention mechanism is a wise way to solve this problem.However,using single attention mechanism may cause incomplete concern of features.This paper improves the attention mechanism method and proposes a hybrid attention mechanism that combines the spatial attention mechanism method and the channel attention mechanism method.In the case that the attention mechanism will cause the loss of the original features,a small portion of image features were added as compensation.For the attention mechanism of text features,a selfattention mechanism was introduced,and the internal structural features of sentences were strengthened to improve the overall model.The results show that attention mechanism and feature compensation add 6.1%accuracy to multimodal low-rank bilinear pooling network.展开更多
The end-to-end separation algorithm with superior performance in the field of speech separation has not been effectively used in music separation.Moreover,since music signals are often dual channel data with a high sa...The end-to-end separation algorithm with superior performance in the field of speech separation has not been effectively used in music separation.Moreover,since music signals are often dual channel data with a high sampling rate,how to model longsequence data and make rational use of the relevant information between channels is also an urgent problem to be solved.In order to solve the above problems,the performance of the end-to-end music separation algorithm is enhanced by improving the network structure.Our main contributions include the following:(1)A more reasonable densely connected U-Net is designed to capture the long-term characteristics of music,such as main melody,tone and so on.(2)On this basis,the multi-head attention and dualpath transformer are introduced in the separation module.Channel attention units are applied recursively on the feature map of each layer of the network,enabling the network to perform long-sequence separation.Experimental results show that after the introduction of the channel attention,the performance of the proposed algorithm has a stable improvement compared with the baseline system.On the MUSDB18 dataset,the average score of the separated audio exceeds that of the current best-performing music separation algorithm based on the time-frequency domain(T-F domain).展开更多
In many existing multi-view gait recognition methods based on images or video sequences,gait sequences are usually used to superimpose and synthesize images and construct energy-like template.However,information may b...In many existing multi-view gait recognition methods based on images or video sequences,gait sequences are usually used to superimpose and synthesize images and construct energy-like template.However,information may be lost during the process of compositing image and capture EMG signals.Errors and the recognition accuracy may be introduced and affected respectively by some factors such as period detection.To better solve the problems,a multi-view gait recognition method using deep convolutional neural network and channel attention mechanism is proposed.Firstly,the sliding time window method is used to capture EMG signals.Then,the back-propagation learning algorithm is used to train each layer of convolution,which improves the learning ability of the convolutional neural network.Finally,the channel attention mechanism is integrated into the neural network,which will improve the ability of expressing gait features.And a classifier is used to classify gait.As can be shown from experimental results on two public datasets,OULP and CASIA-B,the recognition rate of the proposed method can be achieved at 88.44%and 97.25%respectively.As can be shown from the comparative experimental results,the proposed method has better recognition effect than several other newer convolutional neural network methods.Therefore,the combination of convolutional neural network and channel attention mechanism is of great value for gait recognition.展开更多
Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details o...Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details of reconstructed images.To address this issue,a channel attention based wavelet cascaded network for image super-resolution(CWSR) is proposed.Specifically,a second-order channel attention(SOCA) mechanism is incorporated into the network,and the covariance matrix normalization is utilized to explore interdependencies between channel-wise features.Then,to boost the quality of residual features,the non-local module is adopted to further improve the global information integration ability of the network.Finally,taking the image loss in the spatial and wavelet domains into account,a dual-constrained loss function is proposed to optimize the network.Experimental results illustrate that CWSR outperforms several state-of-the-art methods in terms of both visual quality and quantitative metrics.展开更多
Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learn...Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learning method, named Attention-Based Prototypical Network, is proposed for forest fire smoke detection. Specifically, feature extraction network, which consists of convolutional block attention module, could extract high-level and discriminative features and further decrease the false alarm rate resulting from suspected smoke areas. Moreover, we design a metalearning module to alleviate the overfitting issue caused by limited smoke images, and the meta-learning network enables achieving effective detection via comparing the distance between the class prototype of support images and the features of query images. A series of experiments on forest fire smoke datasets and miniImageNet dataset testify that the proposed method is superior to state-of-the-art few-shot learning approaches.展开更多
Recent applications of convolutional neural networks(CNNs)in single image super-resolution(SISR)have achieved unprecedented performance.However,existing CNN-based SISR network structure design consider mostly only cha...Recent applications of convolutional neural networks(CNNs)in single image super-resolution(SISR)have achieved unprecedented performance.However,existing CNN-based SISR network structure design consider mostly only channel or spatial information,and cannot make full use of both channel and spatial information to improve SISR performance further.The present work addresses this problem by proposing a mixed attention densely residual network architecture that can make full and simultaneous use of both channel and spatial information.Specifically,we propose a residual in dense network structure composed of dense connections between multiple dense residual groups to form a very deep network.This structure allows each dense residual group to apply a local residual skip connection and enables the cascading of multiple residual blocks to reuse previous features.A mixed attention module is inserted into each dense residual group,to enable the algorithm to fuse channel attention with laplacian spatial attention effectively,and thereby more adaptively focus on valuable feature learning.The qualitative and quantitative results of extensive experiments have demonstrate that the proposed method has a comparable performance with other stateof-the-art methods.展开更多
Image inpainting based on deep learning has been greatly improved.The original purpose of image inpainting was to repair some broken photos, suchas inpainting artifacts. However, it may also be used for malicious oper...Image inpainting based on deep learning has been greatly improved.The original purpose of image inpainting was to repair some broken photos, suchas inpainting artifacts. However, it may also be used for malicious operations,such as destroying evidence. Therefore, detection and localization of imageinpainting operations are essential. Recent research shows that high-pass filteringfull convolutional network (HPFCN) is applied to image inpainting detection andachieves good results. However, those methods did not consider the spatial location and channel information of the feature map. To solve these shortcomings, weintroduce the squeezed excitation blocks (SE) and propose a high-pass filter attention full convolutional network (HPACN). In feature extraction, we apply concurrent spatial and channel attention (scSE) to enhance feature extraction and obtainmore information. Channel attention (cSE) is introduced in upsampling toenhance detection and localization. The experimental results show that the proposed method can achieve improvement on ImageNet.展开更多
基金The authors would like to thank Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2023R319)this research was funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.
文摘The semantic segmentation of very high spatial resolution remote sensing images is difficult due to the complexity of interpreting the interactions between the objects in the scene. Indeed, effective segmentation requires considering spatial local context and long-term dependencies. To address this problem, the proposed approach is inspired by the MAC-UNet network which is an extension of U-Net, densely connected combined with channel attention. The advantages of this solution are as follows: 4) The new model introduces a new attention called propagate attention to build an attention-based encoder. 2) The fusion of multi-scale information is achieved by a weighted linear combination of the attentions whose coefficients are learned during the training phase. 3) Introducing in the decoder, the Spatial-Channel-Global-Local block which is an attention layer that uniquely combines channel attention and spatial attention locally and globally. The performances of the model are evaluated on 2 datasets WHDLD and DLRSD and show results of mean intersection over union (mIoU) index in progress between 1.54% and 10.47% for DLRSD and between 1.04% and 4.37% for WHDLD compared with the most efficient algorithms with attention mechanisms like MAU-Net and transformers like TMNet.
基金funded by Yayasan UTP FRG(YUTP-FRG),grant number 015LC0-280 and Computer and Information Science Department of Universiti Teknologi PETRONAS.
文摘Object detection has made a significant leap forward in recent years.However,the detection of small objects continues to be a great difficulty for various reasons,such as they have a very small size and they are susceptible to missed detection due to background noise.Additionally,small object information is affected due to the downsampling operations.Deep learning-based detection methods have been utilized to address the challenge posed by small objects.In this work,we propose a novel method,the Multi-Convolutional Block Attention Network(MCBAN),to increase the detection accuracy of minute objects aiming to overcome the challenge of information loss during the downsampling process.The multi-convolutional attention block(MCAB);channel attention and spatial attention module(SAM)that make up MCAB,have been crafted to accomplish small object detection with higher precision.We have carried out the experiments on the Karlsruhe Institute of Technology and Toyota Technological Institute(KITTI)and Pattern Analysis,Statical Modeling and Computational Learning(PASCAL)Visual Object Classes(VOC)datasets and have followed a step-wise process to analyze the results.These experiment results demonstrate that significant gains in performance are achieved,such as 97.75%for KITTI and 88.97%for PASCAL VOC.The findings of this study assert quite unequivocally the fact that MCBAN is much more efficient in the small object detection domain as compared to other existing approaches.
基金supported by the National Natural Science Foundation of China(Grant Nos.62005307 and 61975228).
文摘Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.
基金funded by Anhui Province Quality Engineering Project No.2021jyxm0801Natural Science Foundation of Anhui University of Chinese Medicine under Grant Nos.2020zrzd18,2019zrzd11+1 种基金Humanity Social Science foundation Grants 2021rwzd20,2020rwzd07Anhui University of Chinese Medicine Quality Engineering Projects No.2021zlgc046.
文摘For the problems of complex model structure and too many training parameters in facial expression recognition algorithms,we proposed a residual network structure with a multi-headed channel attention(MCA)module.The migration learning algorithm is used to pre-train the convolutional layer parameters and mitigate the overfitting caused by the insufficient number of training samples.The designed MCA module is integrated into the ResNet18 backbone network.The attention mechanism highlights important information and suppresses irrelevant information by assigning different coefficients or weights,and the multi-head structure focuses more on the local features of the pictures,which improves the efficiency of facial expression recognition.Experimental results demonstrate that the model proposed in this paper achieves excellent recognition results in Fer2013,CK+and Jaffe datasets,with accuracy rates of 72.7%,98.8%and 93.33%,respectively.
基金supported in part by the Science and Technology Innovation Project of CHN Energy Shuo Huang Railway Development Company Ltd(No.SHTL-22-28)the Beijing Natural Science Foundation Fengtai Urban Rail Transit Frontier Research Joint Fund(No.L231002)the Major Project of China State Railway Group Co.,Ltd.(No.K2023T003)。
文摘The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s.
基金funded by the National Natural Science Foundation of China(No.62076044)Scientific Research Foundation of Chongqing University of Technology(No.2020ZDZ015).
文摘Alzheimer’s disease(AD)is a complex,progressive neurodegenerative disorder.The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clinical practice.In this study,we introduce an advanced diagnostic methodology rooted in theMed-3D transfermodel and enhanced with an attention mechanism.We aim to improve the precision of AD diagnosis and facilitate its early identification.Initially,we employ a spatial normalization technique to address challenges like clarity degradation and unsaturation,which are commonly observed in imaging datasets.Subsequently,an attention mechanism is incorporated to selectively focus on the salient features within the imaging data.Building upon this foundation,we present the novelMed-3D transfermodel,designed to further elucidate and amplify the intricate features associated withADpathogenesis.Our proposedmodel has demonstrated promising results,achieving a classification accuracy of 92%.To emphasize the robustness and practicality of our approach,we introduce an adaptive‘hot-updating’auxiliary diagnostic system.This system not only enables continuous model training and optimization but also provides a dynamic platform to meet the real-time diagnostic and therapeutic demands of AD.
基金support from the Ministry of Science and Tech-nology of the:People's Republic of China(Grant No.2021 YFB2600804)the Open Research Project Programme of the State Key Labor atory of Interet of Things for Smart City(University of Macao)(Grant No.SKL-IoTSC(UM)-2021-2023/ORPF/A19/2022)the General Research Fund(GRF)project(Grant No.15214722)from Research Grants Council(RGC)of Hong Kong Special Administrative Re gion Government of China are gratefully acknowledged.
文摘This research developed a hybrid position-channel network (named PCNet) through incorporating newly designed channel and position attention modules into U-Net to alleviate the crack discontinuity problem in channel and spatial dimensions. In PCNet, the U-Net is used as a baseline to extract informative spatial and channel-wise features from shield tunnel lining crack images. A channel and a position attention module are designed and embedded after each convolution layer of U-Net to model the feature interdependencies in channel and spatial dimensions. These attention modules can make the U-Net adaptively integrate local crack features with their global dependencies. Experiments were conducted utilizing the dataset based on the images from Shanghai metro shield tunnels. The results validate the effectiveness of the designed channel and position attention modules, since they can individually increase balanced accuracy (BA) by 11.25% and 12.95%, intersection over union (IoU) by 10.79% and 11.83%, and F1 score by 9.96% and 10.63%, respectively. In comparison with the state-of-the-art models (i.e. LinkNet, PSPNet, U-Net, PANet, and Mask R–CNN) on the testing dataset, the proposed PCNet outperforms others with an improvement of BA, IoU, and F1 score owing to the implementation of the channel and position attention modules. These evaluation metrics indicate that the proposed PCNet presents refined crack segmentation with improved performance and is a practicable approach to segment shield tunnel lining cracks in field practice.
基金This work was supported by the Sichuan Science and Technology Program(2021YFQ0003).
文摘Visual question answering(VQA)has attracted more and more attention in computer vision and natural language processing.Scholars are committed to studying how to better integrate image features and text features to achieve better results in VQA tasks.Analysis of all features may cause information redundancy and heavy computational burden.Attention mechanism is a wise way to solve this problem.However,using single attention mechanism may cause incomplete concern of features.This paper improves the attention mechanism method and proposes a hybrid attention mechanism that combines the spatial attention mechanism method and the channel attention mechanism method.In the case that the attention mechanism will cause the loss of the original features,a small portion of image features were added as compensation.For the attention mechanism of text features,a selfattention mechanism was introduced,and the internal structural features of sentences were strengthened to improve the overall model.The results show that attention mechanism and feature compensation add 6.1%accuracy to multimodal low-rank bilinear pooling network.
基金National Natural Science Foundation of China,Grant/Award Number:62071039Beijing Natural Science Foundation,Grant/Award Number:L223033。
文摘The end-to-end separation algorithm with superior performance in the field of speech separation has not been effectively used in music separation.Moreover,since music signals are often dual channel data with a high sampling rate,how to model longsequence data and make rational use of the relevant information between channels is also an urgent problem to be solved.In order to solve the above problems,the performance of the end-to-end music separation algorithm is enhanced by improving the network structure.Our main contributions include the following:(1)A more reasonable densely connected U-Net is designed to capture the long-term characteristics of music,such as main melody,tone and so on.(2)On this basis,the multi-head attention and dualpath transformer are introduced in the separation module.Channel attention units are applied recursively on the feature map of each layer of the network,enabling the network to perform long-sequence separation.Experimental results show that after the introduction of the channel attention,the performance of the proposed algorithm has a stable improvement compared with the baseline system.On the MUSDB18 dataset,the average score of the separated audio exceeds that of the current best-performing music separation algorithm based on the time-frequency domain(T-F domain).
基金This work was supported by the Natural Science Foundation of China(No.61902133)Fujian natural science foundation project(No.2018J05106)Xiamen Collaborative Innovation projects of Produces study grinds(3502Z20173046)。
文摘In many existing multi-view gait recognition methods based on images or video sequences,gait sequences are usually used to superimpose and synthesize images and construct energy-like template.However,information may be lost during the process of compositing image and capture EMG signals.Errors and the recognition accuracy may be introduced and affected respectively by some factors such as period detection.To better solve the problems,a multi-view gait recognition method using deep convolutional neural network and channel attention mechanism is proposed.Firstly,the sliding time window method is used to capture EMG signals.Then,the back-propagation learning algorithm is used to train each layer of convolution,which improves the learning ability of the convolutional neural network.Finally,the channel attention mechanism is integrated into the neural network,which will improve the ability of expressing gait features.And a classifier is used to classify gait.As can be shown from experimental results on two public datasets,OULP and CASIA-B,the recognition rate of the proposed method can be achieved at 88.44%and 97.25%respectively.As can be shown from the comparative experimental results,the proposed method has better recognition effect than several other newer convolutional neural network methods.Therefore,the combination of convolutional neural network and channel attention mechanism is of great value for gait recognition.
基金Supported by the National Natural Science Foundation of China(No.61901183)Fundamental Research Funds for the Central Universities(No.ZQN921)+4 种基金Natural Science Foundation of Fujian Province Science and Technology Department(No.2021H6037)Key Project of Quanzhou Science and Technology Plan(No.2021C008R)Natural Science Foundation of Fujian Province(No.2019J01010561)Education and Scientific Research Project for Young and Middle-aged Teachers of Fujian Province 2019(No.JAT191080)Science and Technology Bureau of Quanzhou(No.2017G046)。
文摘Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details of reconstructed images.To address this issue,a channel attention based wavelet cascaded network for image super-resolution(CWSR) is proposed.Specifically,a second-order channel attention(SOCA) mechanism is incorporated into the network,and the covariance matrix normalization is utilized to explore interdependencies between channel-wise features.Then,to boost the quality of residual features,the non-local module is adopted to further improve the global information integration ability of the network.Finally,taking the image loss in the spatial and wavelet domains into account,a dual-constrained loss function is proposed to optimize the network.Experimental results illustrate that CWSR outperforms several state-of-the-art methods in terms of both visual quality and quantitative metrics.
基金The work was supported by the National Key R&D Program of China(Grant No.2020YFC1511601)Fundamental Research Funds for the Central Universities(Grant No.2019SHFWLC01).
文摘Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learning method, named Attention-Based Prototypical Network, is proposed for forest fire smoke detection. Specifically, feature extraction network, which consists of convolutional block attention module, could extract high-level and discriminative features and further decrease the false alarm rate resulting from suspected smoke areas. Moreover, we design a metalearning module to alleviate the overfitting issue caused by limited smoke images, and the meta-learning network enables achieving effective detection via comparing the distance between the class prototype of support images and the features of query images. A series of experiments on forest fire smoke datasets and miniImageNet dataset testify that the proposed method is superior to state-of-the-art few-shot learning approaches.
基金This work was supported in part by the Natural Science Foundation of China under Grant 62063004 and 61762033in part by the Hainan Provincial Natural Science Foundation of China under Grant 2019RC018 and 619QN246by the Postdoctoral Science Foundation under Grant 2020TQ0293.
文摘Recent applications of convolutional neural networks(CNNs)in single image super-resolution(SISR)have achieved unprecedented performance.However,existing CNN-based SISR network structure design consider mostly only channel or spatial information,and cannot make full use of both channel and spatial information to improve SISR performance further.The present work addresses this problem by proposing a mixed attention densely residual network architecture that can make full and simultaneous use of both channel and spatial information.Specifically,we propose a residual in dense network structure composed of dense connections between multiple dense residual groups to form a very deep network.This structure allows each dense residual group to apply a local residual skip connection and enables the cascading of multiple residual blocks to reuse previous features.A mixed attention module is inserted into each dense residual group,to enable the algorithm to fuse channel attention with laplacian spatial attention effectively,and thereby more adaptively focus on valuable feature learning.The qualitative and quantitative results of extensive experiments have demonstrate that the proposed method has a comparable performance with other stateof-the-art methods.
基金supported by the National Natural Science Foundation of China under Grant 62172059,61972057 and 62072055Hunan Provincial Natural Science Foundations of China under Grant 2020JJ4626+1 种基金Scientific Research Fund of Hunan Provincial Education Department of China under Grant 19B004Postgraduate Scientific Research Innovation Project of Hunan Province under Grant CX20210811.
文摘Image inpainting based on deep learning has been greatly improved.The original purpose of image inpainting was to repair some broken photos, suchas inpainting artifacts. However, it may also be used for malicious operations,such as destroying evidence. Therefore, detection and localization of imageinpainting operations are essential. Recent research shows that high-pass filteringfull convolutional network (HPFCN) is applied to image inpainting detection andachieves good results. However, those methods did not consider the spatial location and channel information of the feature map. To solve these shortcomings, weintroduce the squeezed excitation blocks (SE) and propose a high-pass filter attention full convolutional network (HPACN). In feature extraction, we apply concurrent spatial and channel attention (scSE) to enhance feature extraction and obtainmore information. Channel attention (cSE) is introduced in upsampling toenhance detection and localization. The experimental results show that the proposed method can achieve improvement on ImageNet.