In this paper, an empirical investigation is presented, which focuses on unveiling the universality of connectivity correlations in three spaces (the route space, the stop geographical space and bus-transferring spac...In this paper, an empirical investigation is presented, which focuses on unveiling the universality of connectivity correlations in three spaces (the route space, the stop geographical space and bus-transferring space) of urban bustransport networks (BTNs) in four major cities of China. The underlying features of the connectivity correlations are shown in two statistical ways. One is the correlation between the (weighted) average degree of all the nearest neighbouring vertices with degree k, (Knn^w,(k)) Knn(k), and k, and the other is the correlations between the assortativity coefficient r and, respectively, the network size N, the network diameter D, the averaged clustering coefficient C, and the averaged distance (l). The obtained results show qualitatively the same connectivity correlations of all the considered cities under all the three spaces.展开更多
Topological method is applied firstly to calculate the group connectivity indexes of some flotation reagents for sulfide minerals and oxide minerals. The study reveals that some properties of flotation reagents, such ...Topological method is applied firstly to calculate the group connectivity indexes of some flotation reagents for sulfide minerals and oxide minerals. The study reveals that some properties of flotation reagents, such as group electronegativity, energy criterion, solubility product of chemicals and maximum wavelength of ultraviolet absorbency, have linear correlation with the first order group connectivity index (GCI) of polar group, and the related coefficients are all larger than 0.900. The GCI can be used to characterize the structure of groups, and is a sort of new effective structural parameter to study the quantitative structure activity relationship of flotation reagents.展开更多
Combined Reliability distribution with correlation analysis,a new method has been proposed to make Reliability distribution where considering the elements about structure correlation and failure correlation of subsyst...Combined Reliability distribution with correlation analysis,a new method has been proposed to make Reliability distribution where considering the elements about structure correlation and failure correlation of subsystems.Firstly,we make a sequence for subsystems by means of TOPSIS which comprehends the considerations of Reliability allocation,and introducing a Copula connecting function to set up a distribution model based on structure correlation,failure correlation and target correlation,and then acquiring reliability target area of all subsystems by Matlab.In this method,not only the traditional distribution considerations are concerned,but also correlation influences are involved,to achieve supplementing information and optimizing distribution.展开更多
To extract more in-depth information of acoustic emission(AE)signal-cloud in rock failure under triaxial compression,the spatial correlation of scattering AE events in a granite sample is effectively described by the ...To extract more in-depth information of acoustic emission(AE)signal-cloud in rock failure under triaxial compression,the spatial correlation of scattering AE events in a granite sample is effectively described by the cube-cluster model.First,the complete connection of the fracture network is regarded as a critical state.Then,according to the Hoshen-Kopelman(HK)algorithm,the real-time estimation of fracture con-nection is effectively made and a dichotomy between cube size and pore fraction is suggested to solve such a challenge of the one-to-one match between complete connection and cluster size.After,the 3D cube clusters are decomposed into orthogonal layer clusters,which are then transformed into the ellip-soid models.Correspondingly,the anisotropy evolution of fracture network could be visualized by three orthogonal ellipsoids and quantitatively described by aspect ratio.Besides,the other three quantities of centroid axis length,porosity,and fracture angle are analyzed to evaluate the evolution of cube cluster.The result shows the sample dilatancy is strongly correlated to four quantities of aspect ratio,centroid axis length,and porosity as well as fracture angle.Besides,the cube cluster model shows a potential pos-sibility to predict the evolution of fracture angle.So,the cube cluster model provides an in-depth view of spatial correlation to describe the AE signal-cloud.展开更多
To understand the connectivity of cerebral cor-tex, especially the spatial and temporal pattern of movement, functional magnetic resonance imaging (fMRI) during subjects performing finger key presses was used to extra...To understand the connectivity of cerebral cor-tex, especially the spatial and temporal pattern of movement, functional magnetic resonance imaging (fMRI) during subjects performing finger key presses was used to extract functional networks and then investigated their character-istics. Motor cortex networks were constructed with activation areas obtained with statistical analysis as vertexes and correlation coefficients of fMRI time series as linking strength. The equivalent non-motor cortex networks were constructed with certain distance rules. The graphic and dynamical measures of motor cor-tex networks and non-motor cortex networks were calculated, which shows the motor cortex networks are more compact, having higher sta-tistical independence and integration than the non-motor cortex networks. It indicates the motor cortex networks are more appropriate for information diffusion.展开更多
The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of function...The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of functional activities between non-adjacent brain regions, and changes in functional connectivity appear earlier than those in brain structure. In this study, we detected resting-state functional connectivity changes in patients with Alzheimer’s disease to provide reference evidence for disease prediction. Functional magnetic resonance imaging data from patients with Alzheimer’s disease were used to show whether particular white and gray matter areas had certain functional connectivity patterns and if these patterns changed with disease severity. In nine white and corresponding gray matter regions, correlations of normal cognition, early mild cognitive impairment, and late mild cognitive impairment with blood oxygen level-dependent signal time series were detected. Average correlation coefficient analysis indicated functional connectivity patterns between white and gray matter in the resting state of patients with Alzheimer’s disease. Functional connectivity pattern variation correlated with disease severity, with some regions having relatively strong or weak correlations. We found that the correlation coefficients of five regions were 0.3–0.5 in patients with normal cognition and 0–0.2 in those developing Alzheimer’s disease. Moreover, in the other four regions, the range increased to 0.45–0.7 with increasing cognitive impairment. In some white and gray matter areas, there were specific connectivity patterns. Changes in regional white and gray matter connectivity patterns may be used to predict Alzheimer’s disease;however, detailed information on specific connectivity patterns is needed. All study data were obtained from the Alzheimer’s Disease Neuroimaging Initiative Library of the Image and Data Archive Database.展开更多
In this study,we developed software for vehicle big data analysis to analyze the time-series data of connected vehicles.We designed two software modules:The rst to derive the Pearson correlation coefcients to analyze ...In this study,we developed software for vehicle big data analysis to analyze the time-series data of connected vehicles.We designed two software modules:The rst to derive the Pearson correlation coefcients to analyze the collected data and the second to conduct exploratory data analysis of the collected vehicle data.In particular,we analyzed the dangerous driving patterns of motorists based on the safety standards of the Korea Transportation Safety Authority.We also analyzed seasonal fuel efciency(four seasons)and mileage of vehicles,and identied rapid acceleration,rapid deceleration,sudden stopping(harsh braking),quick starting,sudden left turn,sudden right turn and sudden U-turn driving patterns of vehicles.We implemented the density-based spatial clustering of applications with a noise algorithm for trajectory analysis based on GPS(Global Positioning System)data and designed a long shortterm memory algorithm and an auto-regressive integrated moving average model for time-series data analysis.In this paper,we mainly describe the development environment of the analysis software,the structure and data ow of the overall analysis platform,the conguration of the collected vehicle data,and the various algorithms used in the analysis.Finally,we present illustrative results of our analysis,such as dangerous driving patterns that were detected.展开更多
The stratigraphic correlation of well logs plays an essential role in characterizing subsurface reservoirs.However,it suffers from a small amount of training data and expensive computing time.In this work,we propose t...The stratigraphic correlation of well logs plays an essential role in characterizing subsurface reservoirs.However,it suffers from a small amount of training data and expensive computing time.In this work,we propose the Attention Based Dense Network(ASDNet)for the stratigraphic correlation of well logs.To implement the suggested model,we first employ the attention mechanism to the input well logs,which can effectively generate the weighted well logs to serve for further feature extraction.Subsequently,the DenseNet is utilized to achieve good feature reuse and avoid gradient vanishing.After model training,we employ the ASDNet to the testing data set and evaluate its performance based on the well log data set from Northwest China.Finally,the numerical results demonstrate that the suggested ASDNet provides higher prediction accuracy for automated stratigraphic correlation of well logs than state-of-the-art contrastive UNet and SegNet.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 70671089 and 10635040)the foundation of XM06-142
文摘In this paper, an empirical investigation is presented, which focuses on unveiling the universality of connectivity correlations in three spaces (the route space, the stop geographical space and bus-transferring space) of urban bustransport networks (BTNs) in four major cities of China. The underlying features of the connectivity correlations are shown in two statistical ways. One is the correlation between the (weighted) average degree of all the nearest neighbouring vertices with degree k, (Knn^w,(k)) Knn(k), and k, and the other is the correlations between the assortativity coefficient r and, respectively, the network size N, the network diameter D, the averaged clustering coefficient C, and the averaged distance (l). The obtained results show qualitatively the same connectivity correlations of all the considered cities under all the three spaces.
文摘Topological method is applied firstly to calculate the group connectivity indexes of some flotation reagents for sulfide minerals and oxide minerals. The study reveals that some properties of flotation reagents, such as group electronegativity, energy criterion, solubility product of chemicals and maximum wavelength of ultraviolet absorbency, have linear correlation with the first order group connectivity index (GCI) of polar group, and the related coefficients are all larger than 0.900. The GCI can be used to characterize the structure of groups, and is a sort of new effective structural parameter to study the quantitative structure activity relationship of flotation reagents.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51175222,51275205)
文摘Combined Reliability distribution with correlation analysis,a new method has been proposed to make Reliability distribution where considering the elements about structure correlation and failure correlation of subsystems.Firstly,we make a sequence for subsystems by means of TOPSIS which comprehends the considerations of Reliability allocation,and introducing a Copula connecting function to set up a distribution model based on structure correlation,failure correlation and target correlation,and then acquiring reliability target area of all subsystems by Matlab.In this method,not only the traditional distribution considerations are concerned,but also correlation influences are involved,to achieve supplementing information and optimizing distribution.
基金This study was sponsored by the National Natural Science Foundation of China(No.51504257)the State Key Research Development Program of China(No.2016YFC0600704)+1 种基金the Fundamental Research Funds for the Central Universities(Yueqi Outstanding Scholars)(No.2018B051616,2021JCCXLJ01,2021YJSLJ06)the Open Fund of the State Key Laboratory of Coal Mine Disaster Dynamics and Control(No.2011DA105287-FW201604).
文摘To extract more in-depth information of acoustic emission(AE)signal-cloud in rock failure under triaxial compression,the spatial correlation of scattering AE events in a granite sample is effectively described by the cube-cluster model.First,the complete connection of the fracture network is regarded as a critical state.Then,according to the Hoshen-Kopelman(HK)algorithm,the real-time estimation of fracture con-nection is effectively made and a dichotomy between cube size and pore fraction is suggested to solve such a challenge of the one-to-one match between complete connection and cluster size.After,the 3D cube clusters are decomposed into orthogonal layer clusters,which are then transformed into the ellip-soid models.Correspondingly,the anisotropy evolution of fracture network could be visualized by three orthogonal ellipsoids and quantitatively described by aspect ratio.Besides,the other three quantities of centroid axis length,porosity,and fracture angle are analyzed to evaluate the evolution of cube cluster.The result shows the sample dilatancy is strongly correlated to four quantities of aspect ratio,centroid axis length,and porosity as well as fracture angle.Besides,the cube cluster model shows a potential pos-sibility to predict the evolution of fracture angle.So,the cube cluster model provides an in-depth view of spatial correlation to describe the AE signal-cloud.
文摘To understand the connectivity of cerebral cor-tex, especially the spatial and temporal pattern of movement, functional magnetic resonance imaging (fMRI) during subjects performing finger key presses was used to extract functional networks and then investigated their character-istics. Motor cortex networks were constructed with activation areas obtained with statistical analysis as vertexes and correlation coefficients of fMRI time series as linking strength. The equivalent non-motor cortex networks were constructed with certain distance rules. The graphic and dynamical measures of motor cor-tex networks and non-motor cortex networks were calculated, which shows the motor cortex networks are more compact, having higher sta-tistical independence and integration than the non-motor cortex networks. It indicates the motor cortex networks are more appropriate for information diffusion.
基金supported by the National Natural Science Foundation of China,No.61401308,61572063(both to XHW)the Natural Science Foundation of Beijing of China,No.L172055(to XHW)+3 种基金the Beijing Municipal Science&Technology Commission Research Fund of China,No.Z171100000417004(to XHW)the China Postdoctoral Fund,No.2018M631755(to XHW)the Special Fund for Improving Comprehensive Strength of Hebei University in the Midwest of China,No.801260201011(to XHW)the High-Level Talent Funding Project—Selective Post-doctoral Research Project Fund of Hebei Province of China,No.B2018003002(to XHW)
文摘The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of functional activities between non-adjacent brain regions, and changes in functional connectivity appear earlier than those in brain structure. In this study, we detected resting-state functional connectivity changes in patients with Alzheimer’s disease to provide reference evidence for disease prediction. Functional magnetic resonance imaging data from patients with Alzheimer’s disease were used to show whether particular white and gray matter areas had certain functional connectivity patterns and if these patterns changed with disease severity. In nine white and corresponding gray matter regions, correlations of normal cognition, early mild cognitive impairment, and late mild cognitive impairment with blood oxygen level-dependent signal time series were detected. Average correlation coefficient analysis indicated functional connectivity patterns between white and gray matter in the resting state of patients with Alzheimer’s disease. Functional connectivity pattern variation correlated with disease severity, with some regions having relatively strong or weak correlations. We found that the correlation coefficients of five regions were 0.3–0.5 in patients with normal cognition and 0–0.2 in those developing Alzheimer’s disease. Moreover, in the other four regions, the range increased to 0.45–0.7 with increasing cognitive impairment. In some white and gray matter areas, there were specific connectivity patterns. Changes in regional white and gray matter connectivity patterns may be used to predict Alzheimer’s disease;however, detailed information on specific connectivity patterns is needed. All study data were obtained from the Alzheimer’s Disease Neuroimaging Initiative Library of the Image and Data Archive Database.
基金supported by the Technology Innovation Program(10083633,Development on Big Data Analysis Technology and Business Service for Connected Vehicles)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)。
文摘In this study,we developed software for vehicle big data analysis to analyze the time-series data of connected vehicles.We designed two software modules:The rst to derive the Pearson correlation coefcients to analyze the collected data and the second to conduct exploratory data analysis of the collected vehicle data.In particular,we analyzed the dangerous driving patterns of motorists based on the safety standards of the Korea Transportation Safety Authority.We also analyzed seasonal fuel efciency(four seasons)and mileage of vehicles,and identied rapid acceleration,rapid deceleration,sudden stopping(harsh braking),quick starting,sudden left turn,sudden right turn and sudden U-turn driving patterns of vehicles.We implemented the density-based spatial clustering of applications with a noise algorithm for trajectory analysis based on GPS(Global Positioning System)data and designed a long shortterm memory algorithm and an auto-regressive integrated moving average model for time-series data analysis.In this paper,we mainly describe the development environment of the analysis software,the structure and data ow of the overall analysis platform,the conguration of the collected vehicle data,and the various algorithms used in the analysis.Finally,we present illustrative results of our analysis,such as dangerous driving patterns that were detected.
基金supported by the Key Research and Development Program of Shaanxi,China under Grant 2023-YBGY-076the Fundamental Research Funds for the Central Universities,China under Grant XZY012022086the China Postdoctoral Science Foundation Project under Grant 2022M712509.
文摘The stratigraphic correlation of well logs plays an essential role in characterizing subsurface reservoirs.However,it suffers from a small amount of training data and expensive computing time.In this work,we propose the Attention Based Dense Network(ASDNet)for the stratigraphic correlation of well logs.To implement the suggested model,we first employ the attention mechanism to the input well logs,which can effectively generate the weighted well logs to serve for further feature extraction.Subsequently,the DenseNet is utilized to achieve good feature reuse and avoid gradient vanishing.After model training,we employ the ASDNet to the testing data set and evaluate its performance based on the well log data set from Northwest China.Finally,the numerical results demonstrate that the suggested ASDNet provides higher prediction accuracy for automated stratigraphic correlation of well logs than state-of-the-art contrastive UNet and SegNet.