The phenomenon that flow resistances are higher in micro scale flow than in normal flow is clarified through the liquid viscosity. Based on the experimental results of deionized water flow in fused silica microtubes w...The phenomenon that flow resistances are higher in micro scale flow than in normal flow is clarified through the liquid viscosity. Based on the experimental results of deionized water flow in fused silica microtubes with the in- ner radii of 2.5 μm, 5μm, 7.5μm, and 10 μm, respectively, the relationship between water flow velocity and pressure gradient along the axis of tube is analyzed, which gradually becomes nonlinear as the radius of the microtube decreases. From the correlation, a viscosity model of water flow derived from the radius of microtube and the pressure gradient is pro- posed. The flow results modified by the viscosity model are in accordance with those of experiments, which are verified by numerical simulation software and the Hagen-Poiseuille equation. The experimental water flow velocity in a fused silica microtube with diameter of 5.03 μm, which has not been used in the fitting and derivation of the viscosity model, is proved to be comsistent with the viscosity model, showing a rather good match with a relative difference of 5.56%.展开更多
基金supported by the National Natural Science Foundation of China(11072011 and 11002011)the Doctoral Fund of Innovation of BJUT
文摘The phenomenon that flow resistances are higher in micro scale flow than in normal flow is clarified through the liquid viscosity. Based on the experimental results of deionized water flow in fused silica microtubes with the in- ner radii of 2.5 μm, 5μm, 7.5μm, and 10 μm, respectively, the relationship between water flow velocity and pressure gradient along the axis of tube is analyzed, which gradually becomes nonlinear as the radius of the microtube decreases. From the correlation, a viscosity model of water flow derived from the radius of microtube and the pressure gradient is pro- posed. The flow results modified by the viscosity model are in accordance with those of experiments, which are verified by numerical simulation software and the Hagen-Poiseuille equation. The experimental water flow velocity in a fused silica microtube with diameter of 5.03 μm, which has not been used in the fitting and derivation of the viscosity model, is proved to be comsistent with the viscosity model, showing a rather good match with a relative difference of 5.56%.