期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
First-Principles Investigation of Charge Transfer Mechanism of B-Doped 3C-SiC Semiconductor Material
1
作者 Abdullahi Alkali Dauda Muhammad Yusuf Onimisi +7 位作者 Adeyemi Joshua Owolabi Hameed Adeneyi Lawal Hassan Muhammad Gambo Bashir Mohammed Aliyu Surajo Bala Muhammad Lamido Madugu Muhammad Abdurrahman Nainna Johnson Akinade Bamikole 《World Journal of Condensed Matter Physics》 CAS 2024年第2期35-44,共10页
This study delves into the charge transfer mechanism of boron (B)-doped 3C-SiC through first-principles investigations. We explore the effects of B doping on the electronic properties of 3C-SiC, focusing on a 12.5% im... This study delves into the charge transfer mechanism of boron (B)-doped 3C-SiC through first-principles investigations. We explore the effects of B doping on the electronic properties of 3C-SiC, focusing on a 12.5% impurity concentration. Our comprehensive analysis encompasses structural properties, electronic band structures, and charge density distributions. The optimized lattice constant and band gap energy of 3C-SiC were found to be 4.373 Å and 1.36 eV respectively, which is in agreement with previous research (Bui, 2012;Muchiri et al., 2018). Our results show that B doping narrows the band gap, enhances electrical conductivity, and influences charge transfer interactions. The charge density analysis reveals substantial interactions between B dopants and surrounding carbon atoms. This work not only enhances our understanding of the material’s electronic properties, but also highlights the importance of charge density analysis for characterizing charge transfer mechanisms and their implications in the 3C-SiC semiconductors. 展开更多
关键词 First-Principles Calculations DFT Boron (B)-Doped 3C-SiC Charge Transfer
下载PDF
Self-assembled S-scheme In_(2.77)S_(4)/K^(+)-doped g-C_(3)N_(4)photocatalyst with selective O_(2) reduction pathway for efficient H_(2)O_(2) production using water and air
2
作者 Qiqi Zhang Hui Miao +2 位作者 Jun Wang Tao Sun Enzhou Liu 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期176-189,共14页
The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(... The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics. 展开更多
关键词 Photocatalysis H_(2)O_(2) production K^(+)-doped g-C_(3)N_(4) In_(2.77)S_(4) S-scheme heterojunction
下载PDF
Fabrication of Gd_(2)O_(3)-doped CeO_(2)thin films through DC reactive sputtering and their application in solid oxide fuel cells 被引量:3
3
作者 Fuyuan Liang Jiaran Yang +1 位作者 Haiqing Wang Junwei Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1190-1197,共8页
Physical vapor deposition(PVD)can be used to produce high-quality Gd_(2)O_(3)-doped CeO2(GDC)films.Among various PVD methods,reactive sputtering provides unique benefits,such as high deposition rates and easy upscalin... Physical vapor deposition(PVD)can be used to produce high-quality Gd_(2)O_(3)-doped CeO2(GDC)films.Among various PVD methods,reactive sputtering provides unique benefits,such as high deposition rates and easy upscaling for industrial applications.GDC thin films were successfully fabricated through reactive sputtering using a Gd_(0.2)Ce_(0.8)(at%)metallic target,and their application in solid oxide fuel cells,such as buffer layers between yttria-stabilized zirconia(YSZ)/La0.6Sr0.4Co0.2Fe0.8O_(3−δ)and as sublayers in the steel/coating system,was evaluated.First,the direct current(DC)reactive-sputtering behavior of the GdCe metallic target was determined.Then,the GDC films were deposited on NiO-YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films.The results demonstrated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering.Furthermore,the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer.In addition,the insertion of a GDC sublayer between the SUS441 interconnects and the Mn-Co spinel coatings contributed to the reduction of the oxidation rate for SUS441 at operating temperatures,according to the area-specific resistance tests. 展开更多
关键词 solid oxide fuel cell physical vapor deposition Gd2O3-doped CeO_(2) metallic interconnects electrical conductivity
下载PDF
Notch-δ-doped InP Gunn diodes for low-THz band applications
4
作者 Duu Sheng Ong Siti Amiera Mohd Akhbar Kan Yeep Choo 《Journal of Electronic Science and Technology》 EI CAS CSCD 2023年第2期30-43,共14页
The viability of the indium phosphide(InP)Gunn diode as a source for low-THz band applications is analyzed based on a notch-δ-doped structure using the Monte Carlo modeling.The presence of theδ-doped layer could enh... The viability of the indium phosphide(InP)Gunn diode as a source for low-THz band applications is analyzed based on a notch-δ-doped structure using the Monte Carlo modeling.The presence of theδ-doped layer could enhance the current harmonic amplitude(A0)and the fundamental operating frequency(f0)of the InP Gunn diode beyond 300 GHz as compared with the conventional notch-doped structure for a 600-nm length device.With its superior electron transport properties,the notch-δ-doped InP Gunn diodes outperform the corresponding gallium arsenide(GaAs)diodes with up to 1.35 times higher in f0 and 2.4 times larger in A0 under DC biases.An optimized InP notch-δ-doped structure is estimated to be capable of generating 0.32-W radio-frequency(RF)power at 361 GHz.The Monte Carlo simulations predict a reduction of 44%in RF power,when the device temperature is increased from 300 K to 500 K;however,its operating frequency lies at 280 GHz which is within the low-THz band.This shows that the notch-δ-doped InP Gunn diode is a highly promising signal source for low-THz sensors,which are in a high demand in the autonomous vehicle industry. 展开更多
关键词 Gunn diode δ-doped Monte Carlo Indium phosphide(InP) Terahertz source
下载PDF
Ca_(2)MnO_(4)-layered perovskite modified by NaNO_(3)for chemical-looping oxidative dehydrogenation of ethane to ethylene
5
作者 Weixiao Ding Kun Zhao +2 位作者 Shican Jiang Zhen Huang Fang He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期53-64,共12页
Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the... Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions. 展开更多
关键词 Chemical-looping oxidative DEHYDROGENATION ETHANE ETHYLENE NaNO_(3)-doped Ca_(2)MnO_(4)redox catalyst Layered perovskites
下载PDF
An electrochemiluminescent magneto-immunosensor for ultrasensitive detection of hs-cTnI on a microfluidic chip
6
作者 Yun Hui Zhen Zhao +7 位作者 Weiliang Shu Fengshan Shen Weijun Kong Shengyong Geng Zhen Xu Tianzhun Wu Wenhua Zhou Xuefeng Yu 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期13-23,共11页
Sensitive detection and precise quantitation of trace-level crucial biomarkers in a complex sample matrix has become an important area of research.For example,the detection of high-sensitivity cardiac troponin I (hs-c... Sensitive detection and precise quantitation of trace-level crucial biomarkers in a complex sample matrix has become an important area of research.For example,the detection of high-sensitivity cardiac troponin I (hs-cTnI) is strongly recommended in clinical guidelines for early diagnosis of acute myocardial infarction.Based on the use of an electrode modified by single-walled carbon nanotubes (SWCNTs) and a Ru(bpy)32+-doped silica nanoparticle (Ru@SiO2)/tripropylamine (TPA) system,a novel type of electrochemiluminescent (ECL) magnetoimmunosensor is developed for ultrasensitive detection of hs-cTnI.In this approach,a large amount of[Ru(bpy)3]2+is loaded in SiO2(silica nanoparticles) as luminophores with high luminescent efficiency and SWCNTs as electrode surface modification material with excellent electrooxidation ability for TPA.Subsequently,a hierarchical micropillar array of microstructures is fabricated with a magnet placed at each end to efficiently confine a single layer of immunomagnetic microbeads on the surface of the electrode and enable 7.5-fold signal enhancement In particular,the use of transparent SWCNTs to modify a transparent ITO electrode provides a two-order-of-magnitude ECL signal amplification.A good linear calibration curve is developed for hs-cTnI concentrations over a wide range from 10 fg/ml to 10 ng/ml,with the limit of detection calculated as 8.720 fg/ml (S/N=3).This ultrasensitive immunosensor exhibits superior detection performance with remarkable stability,reproducibility,and selectivity.Satisfactory recoveries are obtained in the detection of hs-cTnI in human serum,providing a potentia analysis protocol for clinical applications. 展开更多
关键词 Electrochemiluminescent magneto-immunosensor Microfluidic chip High-sensitivity cardiac troponin I Single-walled carbon nanotube [Ru(bpy)3]2+-doped silica nanoparticle
下载PDF
Peculiar Nonlinear Depletion in Double-Layered Gated Si-δ-Doped GaAs
7
作者 卢铁城 林理彬 +2 位作者 M.LEVIN V.GINODMAN I.SHLIMAK 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2001年第5期538-542,共5页
The low-temperature measurement of Hall effect of the two-dimensional electron system in a double-layered gated Si-δ-doped GaAs is presented.A complex peculiar nonlinear dependence of the depletion on gate voltage i... The low-temperature measurement of Hall effect of the two-dimensional electron system in a double-layered gated Si-δ-doped GaAs is presented.A complex peculiar nonlinear dependence of the depletion on gate voltage is observed.The nonlinearity is also explained on the basis of the assumption that the double-capacity model consists of two δ-doped two-dimensional electron layers and a metallic gate,and the experimental result that the electron mobility is linear with the electron density on a log-log scale. 展开更多
关键词 nonlinear depletion double layerd gated Si-δ-doped GaAs
下载PDF
Preparation and photoelectric properties of Ho^(3+)-doped titanium dioxide nanowire downconversion photoanode 被引量:1
8
作者 李月英 郝洪顺 +6 位作者 王丽君 郭伟华 苏青 秦磊 高文元 刘贵山 胡志强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期3974-3979,共6页
Ho^3+-doped titanium dioxide(TiO2:Ho^3+) downconversion(DC) nanowires were synthesized through a simple hydrothermal method followed by a subsequent calcination process after being immersed in Ho(NO3)3 aqueou... Ho^3+-doped titanium dioxide(TiO2:Ho^3+) downconversion(DC) nanowires were synthesized through a simple hydrothermal method followed by a subsequent calcination process after being immersed in Ho(NO3)3 aqueous solution. Moreover, TiO2:Ho^3+ nanowires(HTNWs) were used as the photoanode in dye-sensitized solar cells(DSSCs) to investigate their photoelectric properties. Scanning electron microscopy(SEM) and X-ray diffraction(XRD) were used to characterize the morphology and structure of the material, respectively. The photofluorescence and ultraviolet-visible absorption spectra of HTNWs reveal a DC from the near and middle ultraviolet light to visible light which matches the strong absorbed region of the N719 dye. Compared with the pure TNW photoanode, HTNWs DC photoanodes show greater photovoltaic efficiency. The photovoltaic conversion efficiency(η) of the DSSCs with HTNWs photoanode doped with 4% Ho2O3(mass fraction) is two times that with pure TNW photoanode. This enhancement could be attributed to HTNWs which could extend the spectral response range of DSSCs to the near and middle ultraviolet region and increase the short-circuit current density(Jsc) of DSSCs, thus leading to the enhancement of photovoltaic conversion efficiency. 展开更多
关键词 Ho3+-doped titanium dioxide nanowire downconversion fluorescence dye-sensitized solar cells photovoltaic performance
下载PDF
Preparation and characterization of Eu^(3+)-doped CaCO_3 phosphor by microwave synthesis 被引量:14
9
作者 KANG Ming LIU Jun +1 位作者 YIN Guangfu SUN Rong 《Rare Metals》 SCIE EI CAS CSCD 2009年第5期439-444,共6页
A Eu^3+-doped CaCO3 phosphor with red emission was prepared by microwave synthesis. The scanning electron microscopy (SEM) image and laser particle size analysis show that the CaCO3:Eu^3+ particles are needle-lik... A Eu^3+-doped CaCO3 phosphor with red emission was prepared by microwave synthesis. The scanning electron microscopy (SEM) image and laser particle size analysis show that the CaCO3:Eu^3+ particles are needle-like in the length range of 5.0-10.0 μm. The results of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy indicate that pure aragonite CaCO3:Eu^3+ is prepared using microwave irradiation and the Eu^3+ ion as a luminescence center inhabits the site of Ca^2+. The photoluminescence excitation (PLE) spectrum shows that the strong broad band at around 270 nm and weak sharp lines in 300-550 nm are assigned to the charge transfer band of Eu^3+-O^2- and intra-configurational 4f-4f transitions of Eu^3+, respectively. The photoluminescence (PL) spectrum implies that the red luminescence can be attributed to the transitions from the ^5D0 excited level to the ^7FJ (J = 0, 1, 2, 3, 4) levels of Eu^3+ ions with the mainly electric dipole transition ^5D0 → ^7F2 (614 and 620 nm), and the Eu^3+ ions prefer to occupy the low symmetric site in the crystal lattice. 展开更多
关键词 PHOSPHORS calcium carbonate Eu^3+-doped microwave synthesis PHOTOLUMINESCENCE
下载PDF
Electrochemical performance of Ti^(4+)-doped LiFePO_4 synthesized by co-precipitation and post-sintering method 被引量:10
10
作者 伍凌 王志兴 +4 位作者 李新海 李灵均 郭华军 郑俊超 王小娟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期814-818,共5页
Ti4+-mixed FePO4·xH2O precursor was prepared by co-precipitation method,with which Ti4+ cations were added in the process of preparing FePO4·xH2O to pursue an effective and homogenous doping way.Ti4+-doped L... Ti4+-mixed FePO4·xH2O precursor was prepared by co-precipitation method,with which Ti4+ cations were added in the process of preparing FePO4·xH2O to pursue an effective and homogenous doping way.Ti4+-doped LiFePO4 was prepared by an ambient-reduction and post-sintering method using the as-prepared precursor,Li2CO3 and oxalic acid as raw materials.The samples were characterized by scanning electron microscopy (SEM),X-ray diffractometry (XRD),electrochemical impedance spectroscopy (EIS),and electrochemical charge/discharge test.Effects of Ti4+-doping and sintering temperature on the physical and electrochemical performance of LiFePO4 powders were investigated.It is noted that Ti4+-doping can improve the electrochemical performance of LiFePO4 remarkably.The Ti4+-doped sample sintered at 600 ℃ delivers an initial discharge capacity of 150,130 and 125 mA·h/g with 0.1C,1C and 2C rates,respectively,without fading after 40 cycles. 展开更多
关键词 lithium-ion battery cathode material LIFEPO4 Ti4+-doping CO-PRECIPITATION
下载PDF
Effect of defect complex on magnetic properties of (Fe, Mn)-doped ZnO thin films 被引量:5
11
作者 Yang, Hailing Xu, Xiaoguang +4 位作者 Zhang, Guoqing Miao, Jun Zhang, Xin Wu, Shizhe Jiang, Yong 《Rare Metals》 SCIE EI CAS CSCD 2012年第2期154-157,共4页
We have observed room temperature ferromagnetism in Mn-doped and (Fe, Mn)-codoped ZnO thin films grown under different oxygen partial pressures by pulsed laser deposition. The X-ray diffraction and optical transmissio... We have observed room temperature ferromagnetism in Mn-doped and (Fe, Mn)-codoped ZnO thin films grown under different oxygen partial pressures by pulsed laser deposition. The X-ray diffraction and optical transmission spectra studies demonstrate the natural incorporation of Fe and Mn cations into wurtzite ZnO lattices. The effects of transition metal doping and defects on the magnetic properties was investigated. It is found that room temperature ferromagnetism is sensitive to oxygen vacancy and Zn vacancy. The absence of ferromagnetism in pure ZnO films grown under different oxygen partial pressures reveals that the transition metal ions should also play an important role in inducing the ferromagnetism. 展开更多
关键词 diluted magnetic semiconductors pulsed laser deposition (Fe Mn)-doped ZnO
下载PDF
Green and red up-conversion emissions and thermometric application of Er^(3+) -doped silicate glass 被引量:3
12
作者 李成仁 董斌 +1 位作者 李磊 雷明凯 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第1期224-227,共4页
The green and red up-conversion emissions centred at about 534, 549 and 663 nm of wavelength, corresponding respectively to the ^2H11/2 → ^4I15/2, ^4S3/2 → ^4I15/2 and ^4F9/2 → ^4I15/2 transitions of Er^3+ ions, h... The green and red up-conversion emissions centred at about 534, 549 and 663 nm of wavelength, corresponding respectively to the ^2H11/2 → ^4I15/2, ^4S3/2 → ^4I15/2 and ^4F9/2 → ^4I15/2 transitions of Er^3+ ions, have been observed for the Er^3+-doped silicate glass excited by a 978 nm semiconductor laser beam. Excitation power dependent behaviour of the up-conversion emission intensity indicates that a two-photon absorption up-conversion process is responsible for the green and red up-conversion emissions. The temperature dependence of the green up-conversion emissions is also studied in a temperature range of 296-673 K, which shows that Er^3+-doped silicate glass can be used as a sensor in high-temperature measurement. 展开更多
关键词 Er^3+-doped silicate glass up-conversion emission fluorescence intensity ratio
下载PDF
Preparation and photocatalytic activity of Cu^(2+)-doped TiO_2/SiO_2 被引量:3
13
作者 Ru-fen Chen Cui-xuan Zhang Juan Deng Guo-qiang Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第2期220-225,共6页
Cu^2+-doped nanostructured TiO2-coated SiO2 (TiO2/SiO2) particles were prepared by the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized by the sol-gel ... Cu^2+-doped nanostructured TiO2-coated SiO2 (TiO2/SiO2) particles were prepared by the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized by the sol-gel method using TiOSO4 as a precursor. The experimental results showed that TiO2 nanopowders on the surface of SiO2 particles were well distributed and compact. The amount of TiO2 increased with the increase in coating layers. The shell structure appeared to be composed of anatase titania nanocrystals at 550℃. The 2-layer coated TiO2 particles on the surface showed a higher degradation rate compared with all the different-layer samples. The photocatalytic activity of Cu^2+-doped TiO2/SiO2 was higher than that ofundoped TiO2/SiO2. The optimum dopant content was about 0.10wt%. 展开更多
关键词 nanostructured TiO2 SiO2 particles layer-byqayer assembly Cu^2+ -doped photocatalytic activity
下载PDF
Novel Electro-Optical Modulator Utilizing GeO_2-Doped Silica Waveguide 被引量:2
14
作者 李九生 贾大功 《Transactions of Tianjin University》 EI CAS 2009年第3期222-224,共3页
In order to achieve a modulator with broad bandwidth and perfect impedance match,a novel electro-optical modulator based on GeO2-doped silica waveguides on silicon substrate is designed.The finite element model of the... In order to achieve a modulator with broad bandwidth and perfect impedance match,a novel electro-optical modulator based on GeO2-doped silica waveguides on silicon substrate is designed.The finite element model of the whole electro-optical modulator is established by means of ANSYS.With the finite element method analysis,the performance of the novel modulator is predicted.The simulation reveals that the designed modulator operates with a product of 3 dB optical bandwidth and modulating length of 226.59 GHz·cm,and a characteristic impedance of 51.6 Ω at 1 550 nm wavelength.Moreover,the calculated electrical reflected power of coplanar waveguide electrode is below-20 dB in the frequency ranging from 45 MHz to 65 GHz.Therefore,the designed modulator has wide modulation bandwidth and perfect impedance match. 展开更多
关键词 optical modulator GeO2-doped silica finite element method
下载PDF
Characterization of the BaBiO_3-doped BaTiO_3 positive temperature coefficient of a resistivity ceramic using impedance spectroscopy with T_c=155℃ 被引量:3
15
作者 袁昌来 刘心宇 +2 位作者 周昌荣 许积文 杨云 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第4期543-550,共8页
BaBiO3-doped BaTiO3 (BB-BT) ceramic, as a candidate for lead-free positive temperature coefficient of resistivity (PTCR) materials with a higher Curie temperature, has been synthesized in air by a conventional sin... BaBiO3-doped BaTiO3 (BB-BT) ceramic, as a candidate for lead-free positive temperature coefficient of resistivity (PTCR) materials with a higher Curie temperature, has been synthesized in air by a conventional sintering technique. The temperature dependence of resistivity shows that the phase transition of the PTC thermistor ceramic occurs at the Curie temperature, Tc = 155℃, which is higher than that of BaTiO3 (≤ 130 ℃). Analysis of ac impedance data using complex impedance spectroscopy gives the alternate current (AC) resistance of the PTCR ceramic. By additional use of the complex electric modulus formalism to analyse the same data, the inhomogeneous nature of the ceramic may be unveiled. The impedance spectra reveal that the grain resistance of the BB-BT sample is slightly influenced by the increase of temperature, indicating that the increase in overall resistivity is entirely due to a grain-boundary effect. Based on the dependence of the extent to which the peaks of the imaginary part of electric modulus and impedance are matched on frequency, the conduction mechanism is also discussed for a BB-BT ceramic system. 展开更多
关键词 BaBiO3-doped BaTiO3 positive temperature coefficient thermistor impedance spectroscopy high Tc
下载PDF
Promotional effect for SCR of NO with CO over MnO_(x)-doped Fe_(3)O_(4) nanoparticles derived from metal-organic frameworks 被引量:5
16
作者 Yu Zhang Ling Zhao +1 位作者 Ziang Chen Xinyong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第6期113-125,共13页
MnO_(x)-Fe_(3)O_(4) nanomaterials were fabricated by using the innovative scheme of pyrolyzing manganesedoped iron-based metal organic framework in inert atmosphere and exhibited extraordinary performance of NO reduct... MnO_(x)-Fe_(3)O_(4) nanomaterials were fabricated by using the innovative scheme of pyrolyzing manganesedoped iron-based metal organic framework in inert atmosphere and exhibited extraordinary performance of NO reduction by CO(CO-SCR).Multi-technology characterizations were conducted to ascertain the properties of fabricated materials(e.g.,TGA,XRD,SEM,FT-IR,XPS,BET,H_(2)-TPR and O_(2)-TPD).Moreover,the interaction between reactants and catalysts was ascertained by in situ FT-IR.Experimental results demonstrated that Mn was an ideal promoter for iron oxides,resulting in decrease of crystallite size,improve reducibility property,enhance the mobility and the amount of lattice O^(2-) species,as well as strength the adsorption ability of active NO and CO to form multiple species(e.g.,nitrate and carbonate).The unprecedented enhancement of CO-SCR activity over Mn-Fe nanomaterials follows the Eley-Rideal(E-R)and Langmuir-Hinshelwood(L-H)reaction pathway. 展开更多
关键词 Metal-organic framework MnO_(x)-doped Fe_(3)O_(4) NO reduction In situ FT-IR Reaction mechanism
下载PDF
Effect of Eu^3+-doping on morphology and fluorescent properties of neodymium vanadate nanorod-arrays 被引量:1
17
作者 Li TIAN Shan-min CHEN +4 位作者 Qiang LIU Jie-ling WU Rui-ni ZHAO Shan LI Li-juan CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第4期1031-1037,共7页
Tetragonal structural(t-NdVO4)nanorod-arrays were fabricated by simple one-pot hydrothermal method.The phase,morphology and microstructure of NdVO4 were characterized by X-ray diffractometer,scanning electron microsco... Tetragonal structural(t-NdVO4)nanorod-arrays were fabricated by simple one-pot hydrothermal method.The phase,morphology and microstructure of NdVO4 were characterized by X-ray diffractometer,scanning electron microscope(SEM),transmission electron microscope(TEM),dispersive X-ray spectrometer(EDS)and selected area electron diffraction(SAED)techniques.t-NdVO4 nanorods are single-crystalline with a length of 100 nm and a diameter of 25 nm,which grow orientally along the direction of(112)crystalline plane and self-assemble to form nanorod-arrays.The results show that Eu^3+-doping interrupts the formation of NdVO4 nanorod-arrays,and then leads to the red-shift of the strongest luminescence emission of Nd3+transition from 4D3/2 state to 4I11/2 and decreases its intensity of the fluorescence emission at 400 nm sharply.The research results have some reference values to optimize the photoluminescence performance of rare earth vanadates. 展开更多
关键词 Eu^3+-doping MORPHOLOGY fluorescent properties neodymium vanadate nanorod-arrays hydrothermal method
下载PDF
Tm^(3+)-doped tellurite glass with Yb^(3+) energy sensitized for broadband amplifier at 1400–1700 nm bands 被引量:1
18
作者 王训四 聂秋华 +3 位作者 徐铁峰 沈祥 戴世勋 盖娜 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第6期907-911,共5页
A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were perfectly complimentary to the current C band of optic communication. The fluorescence was bas... A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were perfectly complimentary to the current C band of optic communication. The fluorescence was based on energy transfer and up-conversion processes between Tm^3+ and Yb^3+ under direct pumping of 975 nm LD. The spectra and lifetimes of Tm^3+ fluorescence in the tellurite glass were described. The corresponding fluorescence characteristics and energy migration process were analyzed by the method of lifetime and intensity comparison. The mechanism of the up-conversion based IR fluorescence was presented upon analyzing the multi-photon pumping process. The potential advantages of Tm^3+/Yb^3+ co-doped tellurite glass as amplifier material were concluded. 展开更多
关键词 broadband amplifier Tm^3+-doped amplifier tellurite glass energy transfer rare earths
下载PDF
2 μm mid-infrared optical spectra of Tm3+-doped germanium gallate glasses 被引量:1
19
作者 XIA Haiping LIN Qiongfei ZHANG Jianli ZHANG Qinyuan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第5期781-785,共5页
Glasses with the composition of 65GeO212Ga2O3-10BaO-8Li2O-5La2O3(molar ratio) doped with 1.526 wt.%, 3.006 wt.%, 5.836 wt.%, 11.028 wt.%, and 15.678 wt.% Tm2O3, respectively, were fabricated by conventional melting me... Glasses with the composition of 65GeO212Ga2O3-10BaO-8Li2O-5La2O3(molar ratio) doped with 1.526 wt.%, 3.006 wt.%, 5.836 wt.%, 11.028 wt.%, and 15.678 wt.% Tm2O3, respectively, were fabricated by conventional melting method. According to the absorption spectra and the Judd-Ofelt theory, the J-O strength parameters (Ω2,Ω4, Ω6) were calculated, with which the radiative transition probabilities,branching ratios and radiative lifetimes were obtained. The infrared emission spectra (with 808 nm LD excitation) at~1.47 and~1.8 μm of various concentrations of Tm3+-doped glasses were studied. The emission intensity at~1.8 μm reached to the maximum when the Tm2O3-doping concentration was near to be~3.006 wt.% (1.0 mol.%), and then decreased as doping concentration increased further. The mechanism of the fluorescence intensity change was explained with the cross-relaxation effect and the concentration quenching effect of Tm3+. Meanwhile, according to McCumber theory, the absorption and emission cross-sections corresponding to the 3F4→3H6 transitions of Tm3+ at 1.8 μm was obtained. For Tm3+-doped germanate glasses, the maximum emission cross-section reached a value higher than that re-ported for fluorozircoaluminate glasses. It is expected to be a favorable candidate host for~2.0 μm mid-inflated laser because the glass shows favorable optical spectra. 展开更多
关键词 Tm3+-doped germanium-gallate GLASSES spectral properties cross RELAXATION emission CROSS-SECTION rare earths
下载PDF
Three-photon-excited fluorescence of Tb^(3+)-doped CaO-Al_2O_3-SiO_2 glass by femtosecond laser irradiation 被引量:3
20
作者 马红萍 祝邦文 邹凤楼 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第6期928-931,共4页
A near infrared to visible blue, green, and red upconversion luminescence in a Tb^3+-doped CaO-Al2O3-SiO2 glass was studied, which was excited using 800 nm femtosecond laser irradiation. The upconversion luminescence... A near infrared to visible blue, green, and red upconversion luminescence in a Tb^3+-doped CaO-Al2O3-SiO2 glass was studied, which was excited using 800 nm femtosecond laser irradiation. The upconversion luminescence was attributed to ^5D3→^7F5, ^5D3→^7F4, ^5D3→^7F3, ^5D4→^7F6, ^5D4→^7F5, ^5D4→^7F4, and ^5D4→^7F3 transitions of Tb^3+. The relationship between upconversion luminescence intensity and the pump power indicated that a three-photon simultaneous absorption process was dominant in this upconversion luminescence. The intense red, green, and blue upconversion luminescence of Tb^3+-doped CaO-Al2O3-SiO2 glass may be potentially useful in developing three-dimensional display applications. 展开更多
关键词 three-photon-excited fluorescence three-dimensional (3D) volumetric display Tb^3+-doped CaO-Al2O3-SiO2 glass rare earths
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部