To achieve the secondary production in multistage fracturing wells of tight oil,milling tools are usually used to remove the multistage fracturing ball seats to achieve production with a large diameter in later.In thi...To achieve the secondary production in multistage fracturing wells of tight oil,milling tools are usually used to remove the multistage fracturing ball seats to achieve production with a large diameter in later.In this paper,first of all,the working mechanism of milling tools for multistage fracturing ball seats was studied and a mechanical analysis model of single abrasive grain was established.Then,an experimental system for milling tools was developed,and the experimental tests of the flat,the blade,and the slope milling tool were conducted in order.Besides,the morphology of chips and the surface morphology of the workpiece after the experiment were analyzed.Also,the working performance of milling tools was evaluated from the perspectives of working safety,working efficiency,and wear resistance of the milling tool.The results show that the torque of the milling tool increases nonlinearly with the increase in the cutting depth of the abrasive grain and increases linearly with the increase in the cutting width.Also,the chips are irregular particles and the size is mainly from 10 to 50μm.So,the chips should be pumped up with a small pump pressure and a large displacement.Besides this,the cutting depths of the abrasive grains are from 216.20 to 635.47μm and the bottom surface of the milling tool should be eccentric to avoid the zero point of cutting speed.Furthermore,the torque of the slope milling tool is 23.8%larger than that of the flat milling tool,which is also 30.4%smaller than that of the blade milling tool.Compared with the flat milling tool,the working efficiency of the blade milling tool improves by 79.9%and the slope milling tool improves by 111.1%.Also,the wear resistance of the blade milling tool decreases by 102.7%,while the slope milling tool declines by 32.6%when compared with the flat milling tool.Therefore,the slope milling tool has the characteristics of moderate torque,stable working conditions,the highest working efficiency,and fine wear resistance,which is preferably used to mill multistage fracturing ball seats.This study provides a theoretical basis and guidance for milling multistage fracturing ball seats on-site and realizing production with a large diameter in later stages of multistage fracturing wells.展开更多
Cubic boron nitride(cBN)superabrasive grinding wheels exhibit unique advantages in the grinding of difficult-to-cut materials with high strength and toughness,such as titanium alloys and superalloys.However,grinding w...Cubic boron nitride(cBN)superabrasive grinding wheels exhibit unique advantages in the grinding of difficult-to-cut materials with high strength and toughness,such as titanium alloys and superalloys.However,grinding with multilayered metallic cBN superabrasive wheels faces problems in terms of grain wear resistance,the chip storage capability of the working layers and the stability and controllability of the dressing process.Therefore,in this work,novel metallic cBN superabrasive wheels with aggregated cBN(AcBN)grains and open pore structures were fabricated to improve machining efficiency and surface quality.Prior to the grinding trials,the airborne abrasive blasting process was conducted and the abrasive blasting parameters were optimized in view of wear properties of cBN grains and metallic matrix materials.Subsequently,the comparative experiments were performed and then the variations in grinding force and force ratio,grinding temperature,tool wear morphology and ground surface quality of the multilayered AcBN grinding wheels were investigated during machining Ti-6Al-4V alloys.In consideration of the variations of grain erosion wear volume and material removal rate per unit of pure metallic matrix materials as the abrasive blasting parameters changes,the optimal abrasive blasting parameters were identified as the SiC abrasive mesh size of 60#and the abrasive blasting distance and time of 60 mm and 15 s,respectively.The as-developed AcBN grains exhibited better fracture toughness and impact resistance than monocrystalline cBN(McBN)grains because of the existence of metal-bonded materials amongst multiple cBN particles that decreased crack propagation inside whole grains.The metallic porous AcBN wheels had lower grinding forces and temperature and better ground surface quality than vitrified McBN wheels due to the constant layer-by-layer exposure of cBN particles in the working layer of AcBN wheels.展开更多
Unlike monocrystalline cubic boron nitride(CBN), polycrystalline CBN(PCBN) shows not only higher fracture resistance induced by tool-workpiece interaction but also better selfsharpening capability;therefore, efforts h...Unlike monocrystalline cubic boron nitride(CBN), polycrystalline CBN(PCBN) shows not only higher fracture resistance induced by tool-workpiece interaction but also better selfsharpening capability;therefore, efforts have been devoted to the study of PCBN applications in manufacturing engineering. Most of the studies, however, remain qualitative due to difficulties in experimental observations and theoretical modeling and provide limited in-depth understanding of the self-sharpening behavior/mechanism. To fill this research gap, the present study investigates the self-sharpening process of PCBN abrasives in grinding and analyzes the macro-scale fracture behavior and highly localized micro-scale crack propagation in detail. The widely employed finite element(FE) method, together with the classic Voronoi diagram and cohesive element technique,is used considering the pronounced success of FE applications in polycrystalline material modeling.Grinding trials with careful observation of the PCBN abrasive morphologies are performed to validate the proposed method. The self-sharpening details, including fracture morphology, grinding force, strain energy, and damage dissipation energy, are studied. The effects of maximum grain cut depths(MGCDs) and grinding speeds on the PCBN fracture behavior are discussed, and their optimum ranges for preferable PCBN self-sharpening performance are suggested.展开更多
基金supported by the National Science and Technology Major Project under Grant Nos.2016ZX05042004 and 2017ZX05072the Joint Funds of the National Natural Science Foundation of China under Grant No.U1762104+2 种基金the Postgraduate Innovation Project Foundation under Grant No.YCX2019054the Fundamental Research Funds for the Central Universities under Grant No.20CX02306Athe Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment。
文摘To achieve the secondary production in multistage fracturing wells of tight oil,milling tools are usually used to remove the multistage fracturing ball seats to achieve production with a large diameter in later.In this paper,first of all,the working mechanism of milling tools for multistage fracturing ball seats was studied and a mechanical analysis model of single abrasive grain was established.Then,an experimental system for milling tools was developed,and the experimental tests of the flat,the blade,and the slope milling tool were conducted in order.Besides,the morphology of chips and the surface morphology of the workpiece after the experiment were analyzed.Also,the working performance of milling tools was evaluated from the perspectives of working safety,working efficiency,and wear resistance of the milling tool.The results show that the torque of the milling tool increases nonlinearly with the increase in the cutting depth of the abrasive grain and increases linearly with the increase in the cutting width.Also,the chips are irregular particles and the size is mainly from 10 to 50μm.So,the chips should be pumped up with a small pump pressure and a large displacement.Besides this,the cutting depths of the abrasive grains are from 216.20 to 635.47μm and the bottom surface of the milling tool should be eccentric to avoid the zero point of cutting speed.Furthermore,the torque of the slope milling tool is 23.8%larger than that of the flat milling tool,which is also 30.4%smaller than that of the blade milling tool.Compared with the flat milling tool,the working efficiency of the blade milling tool improves by 79.9%and the slope milling tool improves by 111.1%.Also,the wear resistance of the blade milling tool decreases by 102.7%,while the slope milling tool declines by 32.6%when compared with the flat milling tool.Therefore,the slope milling tool has the characteristics of moderate torque,stable working conditions,the highest working efficiency,and fine wear resistance,which is preferably used to mill multistage fracturing ball seats.This study provides a theoretical basis and guidance for milling multistage fracturing ball seats on-site and realizing production with a large diameter in later stages of multistage fracturing wells.
基金financially supported by the National Natural Science Foundation of China(Nos.51921003,92160301 and 52175415)the Fundamental Research Funds for the Central University(No.NP2022441)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Open Foundation State Key Laboratory of Mechanical Transmissions(No.SKLMT-MSKFKT-202101).
文摘Cubic boron nitride(cBN)superabrasive grinding wheels exhibit unique advantages in the grinding of difficult-to-cut materials with high strength and toughness,such as titanium alloys and superalloys.However,grinding with multilayered metallic cBN superabrasive wheels faces problems in terms of grain wear resistance,the chip storage capability of the working layers and the stability and controllability of the dressing process.Therefore,in this work,novel metallic cBN superabrasive wheels with aggregated cBN(AcBN)grains and open pore structures were fabricated to improve machining efficiency and surface quality.Prior to the grinding trials,the airborne abrasive blasting process was conducted and the abrasive blasting parameters were optimized in view of wear properties of cBN grains and metallic matrix materials.Subsequently,the comparative experiments were performed and then the variations in grinding force and force ratio,grinding temperature,tool wear morphology and ground surface quality of the multilayered AcBN grinding wheels were investigated during machining Ti-6Al-4V alloys.In consideration of the variations of grain erosion wear volume and material removal rate per unit of pure metallic matrix materials as the abrasive blasting parameters changes,the optimal abrasive blasting parameters were identified as the SiC abrasive mesh size of 60#and the abrasive blasting distance and time of 60 mm and 15 s,respectively.The as-developed AcBN grains exhibited better fracture toughness and impact resistance than monocrystalline cBN(McBN)grains because of the existence of metal-bonded materials amongst multiple cBN particles that decreased crack propagation inside whole grains.The metallic porous AcBN wheels had lower grinding forces and temperature and better ground surface quality than vitrified McBN wheels due to the constant layer-by-layer exposure of cBN particles in the working layer of AcBN wheels.
基金the financial support provided by the National Natural Science Foundation of China (No. 51775275 and No. 51575270)the Fundamental Research Funds for the Central Universities of China (No. NP2018110)+1 种基金Top Six Talents Project in Jiangsu Province of China (No. JXQC-002)the Foundation of Postgraduate Research & Practice Innovation Program of Jiangsu Province of China (KYCX18_0264)
文摘Unlike monocrystalline cubic boron nitride(CBN), polycrystalline CBN(PCBN) shows not only higher fracture resistance induced by tool-workpiece interaction but also better selfsharpening capability;therefore, efforts have been devoted to the study of PCBN applications in manufacturing engineering. Most of the studies, however, remain qualitative due to difficulties in experimental observations and theoretical modeling and provide limited in-depth understanding of the self-sharpening behavior/mechanism. To fill this research gap, the present study investigates the self-sharpening process of PCBN abrasives in grinding and analyzes the macro-scale fracture behavior and highly localized micro-scale crack propagation in detail. The widely employed finite element(FE) method, together with the classic Voronoi diagram and cohesive element technique,is used considering the pronounced success of FE applications in polycrystalline material modeling.Grinding trials with careful observation of the PCBN abrasive morphologies are performed to validate the proposed method. The self-sharpening details, including fracture morphology, grinding force, strain energy, and damage dissipation energy, are studied. The effects of maximum grain cut depths(MGCDs) and grinding speeds on the PCBN fracture behavior are discussed, and their optimum ranges for preferable PCBN self-sharpening performance are suggested.