Field studies (location Au pits, sampling of different layers of sedimentary sequences filling the pits, panning of sediments), litho-stratigraphic investigations, grain size analysis and outlining of depositional con...Field studies (location Au pits, sampling of different layers of sedimentary sequences filling the pits, panning of sediments), litho-stratigraphic investigations, grain size analysis and outlining of depositional conditions revealed a characteristic fining upward sequence in all the sections of 08 Au-pits within the Betare Oya basin. A typical profile is 2.5 to 4.5 m thick and is composed of a 30 to 50 cm organic topsoil layer, underlain by a 1.5 m thick reddish brownish gold free saprolite, which is underlain by 1.5 m sandy section. From litho-stratigraphic investigations and grain size analysis results a quartz dominated gravelly 1.4 m thick layer consisting in boulders (275 mm), cobbles (2-−0.0148x2 + 1.2187x + 2.0344, R2 = 0.6929 (sandy layer);2) y = 0.0617x2 + 1.0849x + 0.8097, R2 = 0.8694 (gravelly layer);and y > R2 is satisfied in both cases. This implies that Au recovery from these layers could be effective through gravity separation using sieves mounted on classifiers of 7 cm (sandy layer) and 10 cm (gravelly layer) diameter.展开更多
With a strain rate range of 0.01–10 s^(−1) and a deformation temperature range of 1110–1200℃,the isothermal compression test was performed on one powder metallurgy superalloy which is macroscopic segregation free.U...With a strain rate range of 0.01–10 s^(−1) and a deformation temperature range of 1110–1200℃,the isothermal compression test was performed on one powder metallurgy superalloy which is macroscopic segregation free.Using electron backscatter diffraction,the effect of strain rate and deformation temperature on grain shape and grain size of superalloys during thermal deformation was studied.The results established that exquisite and equiaxed dynamic recrystallization(DRX)grains are procured at supernal deformation temperature and high strain rate because of the high dislocation density.At the same time,the interaction between high DRX nucleation rate and low grain growth rate at high strain rate is favorable in making finer DRX grains.The equivalent medial grain size expanded with lowering strain rate and elevating proof temperature.Moreover,the grain shape was researched by the effective method of aspect ratio.Most aspect ratio of original grains is 0.61,and the aspect ratio has important implications for DRX and grain growth process.The average aspect ratio increases slightly when deformation temperature rises from 1110 to 1140℃,while the average aspect ratio increases memorably as the deformation temperature is higher than 1140℃.展开更多
文摘Field studies (location Au pits, sampling of different layers of sedimentary sequences filling the pits, panning of sediments), litho-stratigraphic investigations, grain size analysis and outlining of depositional conditions revealed a characteristic fining upward sequence in all the sections of 08 Au-pits within the Betare Oya basin. A typical profile is 2.5 to 4.5 m thick and is composed of a 30 to 50 cm organic topsoil layer, underlain by a 1.5 m thick reddish brownish gold free saprolite, which is underlain by 1.5 m sandy section. From litho-stratigraphic investigations and grain size analysis results a quartz dominated gravelly 1.4 m thick layer consisting in boulders (275 mm), cobbles (2-−0.0148x2 + 1.2187x + 2.0344, R2 = 0.6929 (sandy layer);2) y = 0.0617x2 + 1.0849x + 0.8097, R2 = 0.8694 (gravelly layer);and y > R2 is satisfied in both cases. This implies that Au recovery from these layers could be effective through gravity separation using sieves mounted on classifiers of 7 cm (sandy layer) and 10 cm (gravelly layer) diameter.
基金This work received financial support of the National Natural Science Foundation of China(Grant No.51805308)the China Postdoctoral Science Foundation(Grant No.2018M631189)+1 种基金the Natural Science Foundation of Shaanxi Province(No.2019JQ-303)the Wenzhou Municipal Science and Technology Foundation(No.G20180032).
文摘With a strain rate range of 0.01–10 s^(−1) and a deformation temperature range of 1110–1200℃,the isothermal compression test was performed on one powder metallurgy superalloy which is macroscopic segregation free.Using electron backscatter diffraction,the effect of strain rate and deformation temperature on grain shape and grain size of superalloys during thermal deformation was studied.The results established that exquisite and equiaxed dynamic recrystallization(DRX)grains are procured at supernal deformation temperature and high strain rate because of the high dislocation density.At the same time,the interaction between high DRX nucleation rate and low grain growth rate at high strain rate is favorable in making finer DRX grains.The equivalent medial grain size expanded with lowering strain rate and elevating proof temperature.Moreover,the grain shape was researched by the effective method of aspect ratio.Most aspect ratio of original grains is 0.61,and the aspect ratio has important implications for DRX and grain growth process.The average aspect ratio increases slightly when deformation temperature rises from 1110 to 1140℃,while the average aspect ratio increases memorably as the deformation temperature is higher than 1140℃.