互联网上的攻击性言论严重扰乱了正常网络秩序,破坏了健康交流的网络环境。现有的检测技术更关注文本中的鲜明特征,难以发现更隐晦的攻击方式。针对上述问题,提出融合反讽机制的攻击性言论检测模型BSWD(Bidirectional Encoder Represent...互联网上的攻击性言论严重扰乱了正常网络秩序,破坏了健康交流的网络环境。现有的检测技术更关注文本中的鲜明特征,难以发现更隐晦的攻击方式。针对上述问题,提出融合反讽机制的攻击性言论检测模型BSWD(Bidirectional Encoder Representation from Transformers-based Sarcasm and Word Detection)。首先,提出基于反讽机制的模型Sarcasm-BERT,以检测言论中的语义冲突;其次,提出细粒度词汇攻击性特征提取模型WordsDetect,检测言论中的攻击性词汇;最后,融合两种模型得到BSWD。实验结果表明,与BERT(Bidirectional Encoder Representation from Transformers)、HateBERT模型相比,所提模型的准确率、精确率、召回率和F1分数指标大部分能提升2%,显著提高了检测性能,更能发现隐含的攻击性言论;同时,与SKS(Sentiment Knowledge Sharing)、BiCHAT(Bidirectional long shortterm memory with deep Convolution neural network and Hierarchical ATtention)模型相比,具有更强的泛化能力和鲁棒性。以上结果验证了BSWD检测隐晦攻击性言论的有效性。展开更多
文摘互联网上的攻击性言论严重扰乱了正常网络秩序,破坏了健康交流的网络环境。现有的检测技术更关注文本中的鲜明特征,难以发现更隐晦的攻击方式。针对上述问题,提出融合反讽机制的攻击性言论检测模型BSWD(Bidirectional Encoder Representation from Transformers-based Sarcasm and Word Detection)。首先,提出基于反讽机制的模型Sarcasm-BERT,以检测言论中的语义冲突;其次,提出细粒度词汇攻击性特征提取模型WordsDetect,检测言论中的攻击性词汇;最后,融合两种模型得到BSWD。实验结果表明,与BERT(Bidirectional Encoder Representation from Transformers)、HateBERT模型相比,所提模型的准确率、精确率、召回率和F1分数指标大部分能提升2%,显著提高了检测性能,更能发现隐含的攻击性言论;同时,与SKS(Sentiment Knowledge Sharing)、BiCHAT(Bidirectional long shortterm memory with deep Convolution neural network and Hierarchical ATtention)模型相比,具有更强的泛化能力和鲁棒性。以上结果验证了BSWD检测隐晦攻击性言论的有效性。
基金Natural Science Foundation of Jiangsu Province (BK20201265)National Natural Science Foundation of China (61372103)Open Project of National Engineering Research Center of Classified Protection and Safeguard Technology for Cybersecurity