期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Grain boundary-induced drastic sensing performance enhancement of Fe_(2)O_(3) gas sensors for acetone
1
作者 Tian-Jun Hu Yi-Fan Li +5 位作者 Yu-Zhu Tian Ying Wang Ya-Ru Chen Jun-Ming Zhang Er-Gui Luo Jian-Feng Jia 《Rare Metals》 SCIE EI CAS 2024年第9期4412-4424,共13页
Exploring the structure-activity relationship between the performance of gas sensors and the structure of semiconductor metal oxide(SMO)nanomaterials is crucial for understanding and designing gas-sensing materials an... Exploring the structure-activity relationship between the performance of gas sensors and the structure of semiconductor metal oxide(SMO)nanomaterials is crucial for understanding and designing gas-sensing materials and overcoming the application limitations of SMO-based gas sensors.Regulation of a single SMO microstructure provides a promising solution to address this scientific problem due to its controllable composition.In this study,we control the grain boundary(GB)density of Fe_(2)O_(3)nanomaterials using a simple solvothermal method.They have similar chemical compositions and crystal phases,providing an ideal platform for studying the influence of the GB density on the gas-sensing performance.Gas-sensing tests showed that the Fe_(2)O_(3)-1 sensor with medium GB density and the Fe_(2)O_(3)-2 sensor with high GB density had higher sensitivity and selectivity than the Fe_(2)O_(3)-0 sensors with low GB density before reaching the optimal operating temperature.However,when the GB density increased,the response to acetone decreased slightly,whereas the optimal operating temperature decreased.This work highlights the unique performance of the GB density in enhancing the gas sensitivity of a single SMO. 展开更多
关键词 Semiconductor metal oxide(SMO) grain boundary(GB)density Oxygen adsorption Charge transfer Gas sensors
原文传递
Microscopic origin and relevant grain size effect of discontinuous grain growth in BaTiO_(3)-based ferroelectric ceramics
2
作者 Hong Li Bo Wu +6 位作者 Cong Lin Xiao Wu Tengfei Lin Min Gao Hong Tao Wenjuan Wu Chunlin Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第33期119-128,共10页
Barium titanate[BaTiO_(3)(BT)]-based ceramics are typical ferroelectric materials.Here,the discontinuous grain growth(DGG)and relevant grain size effect are deeply studied.An obvious DGG phenomenon is observed in a pa... Barium titanate[BaTiO_(3)(BT)]-based ceramics are typical ferroelectric materials.Here,the discontinuous grain growth(DGG)and relevant grain size effect are deeply studied.An obvious DGG phenomenon is observed in a paradigmatic Zr^(4+)-doped BT-based ceramic,with grains growing from∼2.2–6.6 to∼121.8–198.4μm discontinuously near 1320℃.It is found that fine grains can get together and grow into large ones with liquid phase surrounding them above eutectic temperature.Then the grain boundary density(D g)is quantitatively studied and shows a first-order reciprocal relationship with grain size,and the grain size effect is dependent on D g.Fine grains lead to high D g,and then cause fine domains and pseudocubic-like phase structure because of the interrupted long-range ferroelectric orders by grain boundary.High D g also causes the diffusion phase transition and low Curie dielectric peak due to the distribution of phase transition temperature induced by internal stress.Local domain switching experiments reveal that the polarization orientation is more difficult near the grain boundary,implying that the grain boundary inhibition dominates the process of polarization orientation in fine-grain ceramics,which leads to low polarization but a high coercive field.However,large-grain ceramics exhibit easy domain switching and high&similar ferroelectricity.This work reveals that the grain boundary effect dominates the grain size effect in fine-grain ceramics,and expands current knowledge on DGG and grain size effect in polycrystalline materials. 展开更多
关键词 BT-based ferroelectric ceramics Discontinuous grain growth grain boundary density grain size effect on structure/property Microscopic origin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部