Introducing the stress distribution near grain boundaries to improve the dislocation pileup model for the Halt-Petch (H-P) relation, the continuous distribution of dislocations in the pileup could be solved by means o...Introducing the stress distribution near grain boundaries to improve the dislocation pileup model for the Halt-Petch (H-P) relation, the continuous distribution of dislocations in the pileup could be solved by means of Tschebysheff polynomials for the Hilbert transformation. An analytical formula of the stress intensity factor for the dislocation pileup is obtained. The reverse H-P relation may be explained by the modified dislocation-pileup-model.展开更多
粮仓是一个复杂的生态系统,其内部生物、非生物以及环境的耦合关系复杂,且只能对温度等少数参数进行探测,粮仓生态近乎“黑箱”。为了便于研究粮仓复杂的耦合关系、核实其中的基本规律,研究提出了一种基于核磁共振(Nuclear Magnetic Res...粮仓是一个复杂的生态系统,其内部生物、非生物以及环境的耦合关系复杂,且只能对温度等少数参数进行探测,粮仓生态近乎“黑箱”。为了便于研究粮仓复杂的耦合关系、核实其中的基本规律,研究提出了一种基于核磁共振(Nuclear Magnetic Resonance,NMR)的粮仓多场耦合图形化探测系统。该系统由核磁共振成像分析仪、粮仓模拟装置和数据采集处理系统三部分组成,可同时实现粮堆温度、湿度和水分三参数的真实精准探测,并能通过配套云图生成软件直观、形象地呈现粮堆温度场、湿度场和水分场分布云图。该系统首次将低场核磁共振成像技术应用于粮堆多场耦合作用研究领域,为探明粮仓生态复杂的耦合关系,进一步证实相关理论研究结论提供了一种新的技术手段。该系统的提出有助于深化行业正在致力发展的粮堆多场耦合及生物场理论。展开更多
This paper reports crystal structures, magnetic properties and thermal stability of TbCu7-type Sm(8.5)Fe((85.8-x)Co(4.5)Zr(1.2)Nbx(x = 0-1.8) melt-spun compounds and their nitrides, investigated by means of...This paper reports crystal structures, magnetic properties and thermal stability of TbCu7-type Sm(8.5)Fe((85.8-x)Co(4.5)Zr(1.2)Nbx(x = 0-1.8) melt-spun compounds and their nitrides, investigated by means of X-ray diffraction, vibrating sample magnetometer, flux meter and transmission electron microscope. It is found that the lattice parameter ratio c/a of TbCu7-type crystal structure increases with Nb substitution, which indicates that the Nb can increase the stability of the metastable phase in the Sm-Fe ribbons. Nb substitution impedes the formation of magnetic soft phase a-Fe in which reversed domains initially form during the magnetization reversal process. Meanwhile, Nb substitution refines grains and leads to homogeneous micro structure with augmented grain boundaries. Thus the exchange coupling pining field is enhanced and irreversible domain wall propagation gets suppressed. As a result, the magnetic properties are improved and the irreversible flux loss of magnets is notably decreased. A maximum value 771.7 kA/m of the intrinsic coercivity H(cj) is achieved in the 1.2 at% substituted samples.The irreversible flux loss for 2 h exposure at 120 ℃ declines from 8.26% for Nb-free magnets to 6.32% for magnets with 1.2 at% Nb substitution.展开更多
文摘Introducing the stress distribution near grain boundaries to improve the dislocation pileup model for the Halt-Petch (H-P) relation, the continuous distribution of dislocations in the pileup could be solved by means of Tschebysheff polynomials for the Hilbert transformation. An analytical formula of the stress intensity factor for the dislocation pileup is obtained. The reverse H-P relation may be explained by the modified dislocation-pileup-model.
文摘粮仓是一个复杂的生态系统,其内部生物、非生物以及环境的耦合关系复杂,且只能对温度等少数参数进行探测,粮仓生态近乎“黑箱”。为了便于研究粮仓复杂的耦合关系、核实其中的基本规律,研究提出了一种基于核磁共振(Nuclear Magnetic Resonance,NMR)的粮仓多场耦合图形化探测系统。该系统由核磁共振成像分析仪、粮仓模拟装置和数据采集处理系统三部分组成,可同时实现粮堆温度、湿度和水分三参数的真实精准探测,并能通过配套云图生成软件直观、形象地呈现粮堆温度场、湿度场和水分场分布云图。该系统首次将低场核磁共振成像技术应用于粮堆多场耦合作用研究领域,为探明粮仓生态复杂的耦合关系,进一步证实相关理论研究结论提供了一种新的技术手段。该系统的提出有助于深化行业正在致力发展的粮堆多场耦合及生物场理论。
基金Project supported by the National Natural Science Foundation of China(51401028)
文摘This paper reports crystal structures, magnetic properties and thermal stability of TbCu7-type Sm(8.5)Fe((85.8-x)Co(4.5)Zr(1.2)Nbx(x = 0-1.8) melt-spun compounds and their nitrides, investigated by means of X-ray diffraction, vibrating sample magnetometer, flux meter and transmission electron microscope. It is found that the lattice parameter ratio c/a of TbCu7-type crystal structure increases with Nb substitution, which indicates that the Nb can increase the stability of the metastable phase in the Sm-Fe ribbons. Nb substitution impedes the formation of magnetic soft phase a-Fe in which reversed domains initially form during the magnetization reversal process. Meanwhile, Nb substitution refines grains and leads to homogeneous micro structure with augmented grain boundaries. Thus the exchange coupling pining field is enhanced and irreversible domain wall propagation gets suppressed. As a result, the magnetic properties are improved and the irreversible flux loss of magnets is notably decreased. A maximum value 771.7 kA/m of the intrinsic coercivity H(cj) is achieved in the 1.2 at% substituted samples.The irreversible flux loss for 2 h exposure at 120 ℃ declines from 8.26% for Nb-free magnets to 6.32% for magnets with 1.2 at% Nb substitution.