This paper analyzes the impact of industrialization on grain consumption from growth of residents' income and change of diet structure,expansion of size of population,and development of new biomass energy industry...This paper analyzes the impact of industrialization on grain consumption from growth of residents' income and change of diet structure,expansion of size of population,and development of new biomass energy industry.The economic growth in the course of industrialization promotes growth of residents' income,changes residents' diet structure;industrialization leads to rural urbanization and rise of urban residents;industrial development brings about grain demand of biomass energy.All of these greatly increase demand of grain consumption.On the basis of these situations,it presents following countermeasures to guarantee grain consumption demand in the course of industrialization:heighten awareness to fully realize the significance of rapid development of industrialization to grain security;control population growth and improve grain conversion ratio;strengthen grain-saving construction and advocate moderate consumption;develop non-grain biomass energy in many channels to guarantee grain security.展开更多
The spatial-temporal patterns of grain production and consumption have an important influence on the effective national grain supply on condition of tight balance in the total grain amount in China. In this paper, we ...The spatial-temporal patterns of grain production and consumption have an important influence on the effective national grain supply on condition of tight balance in the total grain amount in China. In this paper, we analyze the spatial-temporal pattems of grain production, consumption and the driving mechanism for their evolution processes in China. The results indicate that both gravity centers of grain production and consumption in China moved toward the northern and eastern regions, almost in the same direction. The coordination of grain production and consumption increased slightly from 1995 to 2007 but decreased from 2000 to 2007. There is a spatial difference between the major districts of output increase and the strong growth potential in grain consumption, which indicates an increasing difficulty in improving the regional coordination of grain production and consumption. The movement of the gravity center of grain production is significantly correlated with regional differences in grain production policy, different economic development models, and spatial disparity of land and water resource use. For grain consumption, the main driving factors include rapid urbanization, the upgrade of food consumption structure, and distribution of food industries.展开更多
In semiarid areas, cereal crops often alocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring...In semiarid areas, cereal crops often alocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring wheat (Triticum aestivum L.) as affected by water and phosphorus (P) supply. A factorial design was used with six treatments namely two water regimes (at 80–75% and 50–45% ifeld capacity (FC)) and three P supply rates (P1=0, P2=44 and P3=109 μg P g–1 soil). At shooting and lfowering stages, root respiration and carbon consumption increased with the elevate of P supply rates, regardless of water conditions, which achieved the minimum and maximum at P1 under 50–45% FC and P3 under 80–75% FC, respectively. However, total aboveground biomass and grain yield were higher at P2 under 80–75% FC; and decreased with high P application (P3). The results indicated that rational or low P supply (80–75% of ifeld water capacity and 44 mg P kg–1 soil) should be recommended to improve grain yield by decreasing root carbon consumption in semiarid areas.展开更多
<span style="font-family:Verdana;">A field trial was conducted at a private farm in AL-Hashimiya district Babylon Governorate—the republic of Iraq during the 2016</span><span style="font...<span style="font-family:Verdana;">A field trial was conducted at a private farm in AL-Hashimiya district Babylon Governorate—the republic of Iraq during the 2016</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">2017 and 2017</span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">2018 growing seasons.</span><span style="color:red;"> </span><span style="font-family:Verdana;">This study was conducted using two irrigation methods, sprinkler and surface irrigation, for each of them had three Tillage methods (zero-tillage</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> medium-tillage</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> deep-tillage) and each tillage system had four seeding rate of wheat yield (120</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">180</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">240</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">300) kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Results indicated that the consumptive water use was 557.5 and</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">535.9 mm for surface irrigation and 460.9 and 442.6 mm for sprinkler irrigation in </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">2016-2017 and 2017-2018 growing seasons. Sprinkler irrigation significantly increased the flag leaf area with no significant effect on plant height. However, the minimum tillage and seeding rate (240 kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup></span><span style="font-family:;" "=""><span style="font-family:Verdana;">) significantly increased the plant height and flag leaf </span><span style="font-family:Verdana;">area in both growing seasons. For the grain yield, the sprinkler irrigation, m</span><span style="font-family:Verdana;">inimum tillage, and seeding rate (240 </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup></span><span style="font-family:;" "=""><span style="font-family:Verdana;">) also increased the plant height and flag leaf area by 13%, 10, % 11%, 11%, 12%, and 14% in both growing seasons, respectively, through an increased number of spikes/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, the number of grain spike-1, and 1000-grain weight in both growing seasons, respe</span></span><span style="font-family:Verdana;">ctively. Interestingly the grain yield was increased by 33% and 32% in both growing seasons under the effects of these three factors altogether, respectively. It can be concluded that these factors act synergistically, resulting in a significant improvement in the wheat grain-yield of, less consumptive water use, and high water use efficiency.</span>展开更多
Regularly checking the quantity of stored grain in warehouses is essential for the grain safety of a country.However,current manual inspection ways fail to get real-time measurement results and require spending a lot ...Regularly checking the quantity of stored grain in warehouses is essential for the grain safety of a country.However,current manual inspection ways fail to get real-time measurement results and require spending a lot of manpower and resources.In this paper,we proposed a computer vision-based method to automatically monitor the change in grain quantity of a granary.The proposed method was motivated from the observation that warehouse managers can use a camera to remotely monitor the grain security of a granary,which determines whether grain quantity is reduced by checking the distance between the grain surface and the grain loading line at the outlet of a granary.To this end,images were first captured by a camera,and a two-level spatial constraints-based SVM classifier was learned to detect the grain surface and the grain loading line of the images.During the test phase,the detected result of a test image obtained by SVM was further refined by Grab Cut with higher order potentials to get the more accurate segmentation result.Finally,the area between the grain surface and the grain loading line was calculated,and then compared with the previous measured one to determine whether the grain surface had dropped.The experiment results validate the effectiveness of the two-level spatial constraints SVM and the strategy for monitoring the change in grain quantity.展开更多
Decaleside II is the novel trisaccharide isolated from the edible roots of Decalepis hamiltonii that belong to a new class of natural insecticides. In the present study we have investigated grain protection potential ...Decaleside II is the novel trisaccharide isolated from the edible roots of Decalepis hamiltonii that belong to a new class of natural insecticides. In the present study we have investigated grain protection potential and persistence activity of Decaleside II against stored-product pests such as Rhyzopertha dominica, Sitophilus oryzae, Tribolium castaneum and Callosobruchus chinensis. Decaleside II usually increased parental mortality and reduced F1 progeny in residual toxicity bioassays. At 7 days of the storage period of treated grains and pulses, the mortality was 100% of all four stored product insects. Both wheat and green gram treated with Decaleside II were totally free from infestation for the longer period of storage up to 210 d. Decaleside II being a natural trisaccharide, does not pose any toxic hazard from the treated grain and the lack of toxicity is attributed to the 1, 4 α linkage of the sugars which are easily hydrolyzed by the digestive enzymes such as glucosidases. Therefore, the insect selectivity and mammalian safety of Decaleside II make them highly suitable for use as novel grain protectants of natural origin.展开更多
This paper introduces the status quo of the system structure of direct subsidy for grain production in China,and analyses the function and essence of direct subsidy for grain production in China as follows:the functio...This paper introduces the status quo of the system structure of direct subsidy for grain production in China,and analyses the function and essence of direct subsidy for grain production in China as follows:the function of direct subsidy for grain production in China is to protect and promote the development of food industry,ensure food supply and national food security,protect grain growers' interests,and maintain the dominant position of national food trade;the essence of direct subsidy for grain production is the compensation for grain producers' reasonable interests,the compensation for positive externality of grain production,and social costs of adjusting equilibrium between food supply and demand.We discuss the problems existing in the system of direct subsidy for grain production in China and put forward corresponding countermeasures as follows:first,adhere to improving synergetic system of direct subsidy for grain production;second,adjust the direct subsidy method of grain production;third,establish long-term mechanism of subsidy for grain production;fourth,promote the information-based service level of the system of direct subsidy for grain production.展开更多
Financial distribution to compensate grain production reflects governmental macro-control on grain production and supply. With the reference of agricultural basic theory,agricultural multi-function theory,economic ext...Financial distribution to compensate grain production reflects governmental macro-control on grain production and supply. With the reference of agricultural basic theory,agricultural multi-function theory,economic externality theory,public finance and other theories,this article points out that direct subsidies for grain production is reasonable and necessary with six main theoretical basis,namely fundamentality,multi-function,positive externality of grain production,particularity of grain supply and demand,grain safety being closely linked with national security and basic function of service-oriented government.展开更多
文摘This paper analyzes the impact of industrialization on grain consumption from growth of residents' income and change of diet structure,expansion of size of population,and development of new biomass energy industry.The economic growth in the course of industrialization promotes growth of residents' income,changes residents' diet structure;industrialization leads to rural urbanization and rise of urban residents;industrial development brings about grain demand of biomass energy.All of these greatly increase demand of grain consumption.On the basis of these situations,it presents following countermeasures to guarantee grain consumption demand in the course of industrialization:heighten awareness to fully realize the significance of rapid development of industrialization to grain security;control population growth and improve grain conversion ratio;strengthen grain-saving construction and advocate moderate consumption;develop non-grain biomass energy in many channels to guarantee grain security.
基金supported by the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2012BAH20B04)the National Natural Science Foundation of China(41201599, 41001108)+1 种基金the Natural Science Foundation of Shandong Province,China(ZR2009DL011)the Social Science Foundation of China(08BJY113)
文摘The spatial-temporal patterns of grain production and consumption have an important influence on the effective national grain supply on condition of tight balance in the total grain amount in China. In this paper, we analyze the spatial-temporal pattems of grain production, consumption and the driving mechanism for their evolution processes in China. The results indicate that both gravity centers of grain production and consumption in China moved toward the northern and eastern regions, almost in the same direction. The coordination of grain production and consumption increased slightly from 1995 to 2007 but decreased from 2000 to 2007. There is a spatial difference between the major districts of output increase and the strong growth potential in grain consumption, which indicates an increasing difficulty in improving the regional coordination of grain production and consumption. The movement of the gravity center of grain production is significantly correlated with regional differences in grain production policy, different economic development models, and spatial disparity of land and water resource use. For grain consumption, the main driving factors include rapid urbanization, the upgrade of food consumption structure, and distribution of food industries.
基金supported by the National Nature Science Foundation of China (31300328, 31200335, 31470496)the "111" Program from State Administration of Foreign Experts Affairs (SAFEA) & Ministry of Education (MOE), China (2007B051)+1 种基金the Fundamental Research Funds for the Central Universities, China (lzujbky-2012-97, lzujbky-2015-ct02, lzujbky-2016-86)the funding from the State Key Laboratory of Grassland Agro-ecosystem in Lanzhou University, China
文摘In semiarid areas, cereal crops often alocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring wheat (Triticum aestivum L.) as affected by water and phosphorus (P) supply. A factorial design was used with six treatments namely two water regimes (at 80–75% and 50–45% ifeld capacity (FC)) and three P supply rates (P1=0, P2=44 and P3=109 μg P g–1 soil). At shooting and lfowering stages, root respiration and carbon consumption increased with the elevate of P supply rates, regardless of water conditions, which achieved the minimum and maximum at P1 under 50–45% FC and P3 under 80–75% FC, respectively. However, total aboveground biomass and grain yield were higher at P2 under 80–75% FC; and decreased with high P application (P3). The results indicated that rational or low P supply (80–75% of ifeld water capacity and 44 mg P kg–1 soil) should be recommended to improve grain yield by decreasing root carbon consumption in semiarid areas.
文摘<span style="font-family:Verdana;">A field trial was conducted at a private farm in AL-Hashimiya district Babylon Governorate—the republic of Iraq during the 2016</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">2017 and 2017</span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">2018 growing seasons.</span><span style="color:red;"> </span><span style="font-family:Verdana;">This study was conducted using two irrigation methods, sprinkler and surface irrigation, for each of them had three Tillage methods (zero-tillage</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> medium-tillage</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> deep-tillage) and each tillage system had four seeding rate of wheat yield (120</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">180</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">240</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">300) kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Results indicated that the consumptive water use was 557.5 and</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">535.9 mm for surface irrigation and 460.9 and 442.6 mm for sprinkler irrigation in </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">2016-2017 and 2017-2018 growing seasons. Sprinkler irrigation significantly increased the flag leaf area with no significant effect on plant height. However, the minimum tillage and seeding rate (240 kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup></span><span style="font-family:;" "=""><span style="font-family:Verdana;">) significantly increased the plant height and flag leaf </span><span style="font-family:Verdana;">area in both growing seasons. For the grain yield, the sprinkler irrigation, m</span><span style="font-family:Verdana;">inimum tillage, and seeding rate (240 </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup></span><span style="font-family:;" "=""><span style="font-family:Verdana;">) also increased the plant height and flag leaf area by 13%, 10, % 11%, 11%, 12%, and 14% in both growing seasons, respectively, through an increased number of spikes/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, the number of grain spike-1, and 1000-grain weight in both growing seasons, respe</span></span><span style="font-family:Verdana;">ctively. Interestingly the grain yield was increased by 33% and 32% in both growing seasons under the effects of these three factors altogether, respectively. It can be concluded that these factors act synergistically, resulting in a significant improvement in the wheat grain-yield of, less consumptive water use, and high water use efficiency.</span>
基金supported by Natural Science Project of Henan Science and Technology Department(Grant 162102210189,132102210494)Special Fund for Basic Scientific Research of Henan University of Technology(Grant 2016QNJH25)+1 种基金High-level Personnel Fund of Henan Province(Grant 21476062,31401918)Open fund of Key Laboratory of Grain Information Processing and Control(Grant KFJJ-2018-101)。
文摘Regularly checking the quantity of stored grain in warehouses is essential for the grain safety of a country.However,current manual inspection ways fail to get real-time measurement results and require spending a lot of manpower and resources.In this paper,we proposed a computer vision-based method to automatically monitor the change in grain quantity of a granary.The proposed method was motivated from the observation that warehouse managers can use a camera to remotely monitor the grain security of a granary,which determines whether grain quantity is reduced by checking the distance between the grain surface and the grain loading line at the outlet of a granary.To this end,images were first captured by a camera,and a two-level spatial constraints-based SVM classifier was learned to detect the grain surface and the grain loading line of the images.During the test phase,the detected result of a test image obtained by SVM was further refined by Grab Cut with higher order potentials to get the more accurate segmentation result.Finally,the area between the grain surface and the grain loading line was calculated,and then compared with the previous measured one to determine whether the grain surface had dropped.The experiment results validate the effectiveness of the two-level spatial constraints SVM and the strategy for monitoring the change in grain quantity.
文摘Decaleside II is the novel trisaccharide isolated from the edible roots of Decalepis hamiltonii that belong to a new class of natural insecticides. In the present study we have investigated grain protection potential and persistence activity of Decaleside II against stored-product pests such as Rhyzopertha dominica, Sitophilus oryzae, Tribolium castaneum and Callosobruchus chinensis. Decaleside II usually increased parental mortality and reduced F1 progeny in residual toxicity bioassays. At 7 days of the storage period of treated grains and pulses, the mortality was 100% of all four stored product insects. Both wheat and green gram treated with Decaleside II were totally free from infestation for the longer period of storage up to 210 d. Decaleside II being a natural trisaccharide, does not pose any toxic hazard from the treated grain and the lack of toxicity is attributed to the 1, 4 α linkage of the sugars which are easily hydrolyzed by the digestive enzymes such as glucosidases. Therefore, the insect selectivity and mammalian safety of Decaleside II make them highly suitable for use as novel grain protectants of natural origin.
基金Supported by Southwest University Scientific Research Foundation(SWU10306)The Fundamental Research Funds for the Central Universities (SWU1109039)
文摘This paper introduces the status quo of the system structure of direct subsidy for grain production in China,and analyses the function and essence of direct subsidy for grain production in China as follows:the function of direct subsidy for grain production in China is to protect and promote the development of food industry,ensure food supply and national food security,protect grain growers' interests,and maintain the dominant position of national food trade;the essence of direct subsidy for grain production is the compensation for grain producers' reasonable interests,the compensation for positive externality of grain production,and social costs of adjusting equilibrium between food supply and demand.We discuss the problems existing in the system of direct subsidy for grain production in China and put forward corresponding countermeasures as follows:first,adhere to improving synergetic system of direct subsidy for grain production;second,adjust the direct subsidy method of grain production;third,establish long-term mechanism of subsidy for grain production;fourth,promote the information-based service level of the system of direct subsidy for grain production.
基金Supported by Subsidized Project Launched by Scientific Research Funds of Southwest University:Study on the Performance of Direct Subsidies for Grain Production(SWU10306)Fundamental Research Funds for the Central Universities:Study on Standards of Direct Subsidies for Grain Production(SWU1109039)
文摘Financial distribution to compensate grain production reflects governmental macro-control on grain production and supply. With the reference of agricultural basic theory,agricultural multi-function theory,economic externality theory,public finance and other theories,this article points out that direct subsidies for grain production is reasonable and necessary with six main theoretical basis,namely fundamentality,multi-function,positive externality of grain production,particularity of grain supply and demand,grain safety being closely linked with national security and basic function of service-oriented government.