Amorphous silicon (a-Si), nanocrystalline silicon (nc-Si) and hydrogenated nanocrys- talline silicon (nc-Si:H) films were fabricated by using chemical vapor deposition (CVD) system. The a-Si and nc-Si thin fi...Amorphous silicon (a-Si), nanocrystalline silicon (nc-Si) and hydrogenated nanocrys- talline silicon (nc-Si:H) films were fabricated by using chemical vapor deposition (CVD) system. The a-Si and nc-Si thin films were irradiated with 94 MeV Xe-ions at fluences of 1.0 × 10^11 ions/cm2, 1.0 × 10^12 ions/cm^2 and 1.0 × 10^13 ions/era2 at room temperature (RT). The nc-Si:H films were irradiated with 9 MeV Xe-ions at 1.0 ×10^12 Xe/cm^2, 1.0 × 10^13 Xe/cm2 and 1.0×10^14 Xe/cm2 at RT. For comparison, mono-crystalline silicon (c-Si) samples were also irradiated at RT with 94 MeV Xe-ions. All samples were analyzed by using an UV/VIS/NIR spectrometer and an X-ray powder diffractometer. Variations of the optical band-gap (Eg) and grain size (D) versus the irradiation fluence were investigated systematically. The obtained results showed that the optical band-gaps and grain size of the thin films changed dramatically whereas no observable change was found in c-Si samples after Xe-ion irradiation. Possible mechanism underlying the modification of silicon thin films was briefly discussed.展开更多
This paper reports the synthesis and characterization of ZnO thin films prepared by sol-gel spin coating technique. The sol-gel was prepared from zinc acetate dehydrate as a precursor, 2-me- thoxyethanol as a solvent ...This paper reports the synthesis and characterization of ZnO thin films prepared by sol-gel spin coating technique. The sol-gel was prepared from zinc acetate dehydrate as a precursor, 2-me- thoxyethanol as a solvent and di-ethanolamine as a stabilizer, and then deposited on glass substrate using spin coater at the coating speed of 1000 rpm, 2000 rpm, 3000 rpm, 4000 rpm, 5000 rpm and 6000 rpm. After pre-heated at 150℃, the samples were post-heated at 250oC and also annealed at 400℃. X-ray diffraction (XRD) of the films showed polycrystalline hexagonal structure, with (002) orientation as most intense peak having a grain size of 28.1 nm. The absorbance of the film decreases with increasing wavelength and the transmittance was generally high between visible regions from 280 nm - 1200 nm. The ZnO films deposited at a spinning speed of 2000 rpm had highest transmittance of 88% in the visible region from 280 nm - 1200 nm. The energy band gap was found to be in the range of 3.23 - 3.40 eV. The thicknesses of the films decreased with increase in coating speed. Based on these results, ZnO thin films obtained could have useful application in transparent conducting oxide electrode in solar cells.展开更多
基金supported by the Major State Basic Research Development Program of China(973Program,No.2010CB832902)the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KJCX2-YW-N35)
文摘Amorphous silicon (a-Si), nanocrystalline silicon (nc-Si) and hydrogenated nanocrys- talline silicon (nc-Si:H) films were fabricated by using chemical vapor deposition (CVD) system. The a-Si and nc-Si thin films were irradiated with 94 MeV Xe-ions at fluences of 1.0 × 10^11 ions/cm2, 1.0 × 10^12 ions/cm^2 and 1.0 × 10^13 ions/era2 at room temperature (RT). The nc-Si:H films were irradiated with 9 MeV Xe-ions at 1.0 ×10^12 Xe/cm^2, 1.0 × 10^13 Xe/cm2 and 1.0×10^14 Xe/cm2 at RT. For comparison, mono-crystalline silicon (c-Si) samples were also irradiated at RT with 94 MeV Xe-ions. All samples were analyzed by using an UV/VIS/NIR spectrometer and an X-ray powder diffractometer. Variations of the optical band-gap (Eg) and grain size (D) versus the irradiation fluence were investigated systematically. The obtained results showed that the optical band-gaps and grain size of the thin films changed dramatically whereas no observable change was found in c-Si samples after Xe-ion irradiation. Possible mechanism underlying the modification of silicon thin films was briefly discussed.
文摘This paper reports the synthesis and characterization of ZnO thin films prepared by sol-gel spin coating technique. The sol-gel was prepared from zinc acetate dehydrate as a precursor, 2-me- thoxyethanol as a solvent and di-ethanolamine as a stabilizer, and then deposited on glass substrate using spin coater at the coating speed of 1000 rpm, 2000 rpm, 3000 rpm, 4000 rpm, 5000 rpm and 6000 rpm. After pre-heated at 150℃, the samples were post-heated at 250oC and also annealed at 400℃. X-ray diffraction (XRD) of the films showed polycrystalline hexagonal structure, with (002) orientation as most intense peak having a grain size of 28.1 nm. The absorbance of the film decreases with increasing wavelength and the transmittance was generally high between visible regions from 280 nm - 1200 nm. The ZnO films deposited at a spinning speed of 2000 rpm had highest transmittance of 88% in the visible region from 280 nm - 1200 nm. The energy band gap was found to be in the range of 3.23 - 3.40 eV. The thicknesses of the films decreased with increase in coating speed. Based on these results, ZnO thin films obtained could have useful application in transparent conducting oxide electrode in solar cells.