Grain storage security is big issue related to national economy and the people's livelihood, as well as one of the most important strategic requirements in China. Under the background of grain supply-side structural ...Grain storage security is big issue related to national economy and the people's livelihood, as well as one of the most important strategic requirements in China. Under the background of grain supply-side structural reform, this paper analyzed the grain storage security countermeasures under the new normal conditions with "grain storage technology", one of the national grain security strategies of China during the 13th Five-year Plan, as the guiding ideology, from the perspectives of scientific technologies, policy supports, government supports and talent construction, so as to provide supports for the storage enterprises with vulnerable technological links. In addition, the food security issues discussed in this paper could be a helping hand in improving people's living quality, enhancing grain storage ecological quality, promoting grain green storage quality security, and be of important and profound strategic significance to enhance the macro-control capability of the government, maintain social stability and people's health.展开更多
In China, the quantity of farmer's grain storage covers about 40% of the total grain yield every year. While, the losses of farms' grain storage are up to 8%, which is due to the lack of grain storage facility and t...In China, the quantity of farmer's grain storage covers about 40% of the total grain yield every year. While, the losses of farms' grain storage are up to 8%, which is due to the lack of grain storage facility and technology. The losses of farmer's grain storage could reach nearly 20 million tons every year. In this paper, the current situation and development of grain storage technology and facility for Chinese farmers were presented. And a series of policy and research work for reducing the losses of farms' grain storage was introduced. The large scale farmers are now developing quickly in China, the new storage warehouse and mechanized facility should be developed adaptively. So, the new storage technology and policy to meet the need of large scale farmers were also introduced in this paper.展开更多
Grain security guarantees national security.China has many widely distributed grain depots to supervise grain storage security.However,this has led to a lack of regulatory capacity and manpower.Amid the development of...Grain security guarantees national security.China has many widely distributed grain depots to supervise grain storage security.However,this has led to a lack of regulatory capacity and manpower.Amid the development of reserve-level information technology,big data supervision of grain storage security should be improved.This study proposes big data research architecture and an analysis model for grain storage security;as an example,it illustrates the supervision of the grain loss problem in storage security.The statistical analysis model and the prediction and clustering-based model for grain loss supervision were used to mine abnormal data.A combination of feature extraction and feature selection reduction methods were chosen for dimensionality.A comparative analysis showed that the nonlinear prediction model performed better on the grain loss data set,with R2 of 87.21%,87.83%,91.97%,and 89.40%for Gradient Boosting Regressor(GBR),Random Forest,Decision Tree,XGBoost regression on test sets,respectively.Nineteen abnormal data were filtered out by GBR combined with residuals as an example.The deep learning model had the best performance on the mean absolute error,with an R2 of 85.14%on the test set and only one abnormal data identified.This is contrary to the original intention of finding as many anomalies as possible for supervisory purposes.Five classes were generated using principal component analysis dimensionality reduction combined with Density-Based Spatial Clustering of Applications with Noise(DBSCAN)clustering,with 11 anomalous data points screened by adding the amount of normalized grain loss.Based on the existing grain information system,this paper provides a supervision model for grain storage that can help mine abnormal data.Unlike the current post-event supervision model,this study proposes a pre-event supervision model.This study provides a framework of ideas for subsequent scholarly research;the addition of big data technology will help improve efficient supervisory capacity in the field of grain supervision.展开更多
This paper considers the problem of simulating the humidity distributions of a grain storage system. The distributions are described by partial differential equations(PDE). It is quite difficult to obtain the humidity...This paper considers the problem of simulating the humidity distributions of a grain storage system. The distributions are described by partial differential equations(PDE). It is quite difficult to obtain the humidity profiles from the PDE model. Hence, a discretization method is applied to obtain an equivalent ordinary differential equation model. However, after applying the discretization technique, the cost of solving the system increases as the size increases to a few thousands. It may be noted that after discretization,the degree of freedom of the system remain the same while the order increases. The large dynamic model is reduced using a proper orthogonal decomposition based technique and an equivalent model but of much reduced size is obtained. A controller based on optimal control theory is designed to obtain an input such that the output humidity reaches a desired profile and also its stability is analyzed.Numerical results are presented to show the validity of the reduced model and possible further extensions are identified.展开更多
The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to...The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to repeated freezing-thawing and wetting-drying, which determines the possibility of changing their grain-size composition and structure. Experimental studies in laboratory conditions on the influence of cyclic freezing-thawing (FTC) and wetting-drying (WDC) on the quality indicators of lignites have been carried out, their granulometric (fractional) composition has been studied. Freezing-thawing cycle conditions are as follows (FTC): minimum exposure temperature: -20°C;maximum: +5°C;relative humidity: 30%;number of processing cycles: 3. Wetting-drying cycles are as follows (WDC): drying temperatures are +20, +40, +60, +80°C, drying time 90 minutes, the coals are further subjected to rain (soaking) for a period of water saturation to humidity of 30% - 40% and dry again. The number of wetting-drying cycles is 3 times. The tests have revealed the destructive effects of FTC and WDC on the samples of lower metamorphic grade coal, and the cycles of wet-dry lead to the much higher yield of fine sizes (-6+0;-13+0 mm) than the cycles of freeze-thaw. Furthermore, it is found that the increase in the yield of fines depends on the heating temperature: coal disintegration proceeds more intensively at a higher temperature of drying.展开更多
Post-harvest storage losses (PHLs) remain significant in Sub-Saharan Africa (SSA) due to several factors mainly insect pests and molds. Hermetic storage technologies (HSTs) are being promoted to address these storage ...Post-harvest storage losses (PHLs) remain significant in Sub-Saharan Africa (SSA) due to several factors mainly insect pests and molds. Hermetic storage technologies (HSTs) are being promoted to address these storage losses. In Uganda, HSTs were first introduced in 2012. However, its use among farming households remains low today. Data were collected from 306 smallholder farmers from four districts of Northern Uganda using a pre-tested semi-structured questionnaire to understand their knowledge, use, and constraints to the adoption of hermetic storage. A multivariate Logit regression model was used to find the significance of the factors affecting adoption. Results showed low awareness and use of hermetic storage among smallholder farmers. Only 53.3% of the interviewed farmers were aware of the use of hermetic storage for grain storage. The SuperGrain bag was the most known form of hermetic storage (35.3%), followed by the Purdue Improved Crop Storage (PICS) bag (34.9%), metallic silo (15.5%), and plastic silo (14.4%). Hermetic storage use was even lower as only 17.6% of the surveyed farmers were using one or more forms of hermetic storage to store their grains. Insect pest management without chemical insecticides was the main reason (83.1%) for hermetic storage use. About 75.5% of those aware of hermetic storage had received training in the technology. Hermetic storage use in farming households led to improved food availability, household income, and nutrition. Lack of local availability (50.2%), high costs (37.8%), and inadequate knowledge (6.9%) were the main constraints hindering the adoption of hermetic storage in Northern Uganda. The logit regression models showed that only training in hermetic storage significantly (p = 0.002) affected farmers’ decision to adopt hermetic storage. Understanding the factors that constrain the adoption of HSTs could provide policymakers with important information to initiate and design policies and programs aimed at reducing crop storage losses.展开更多
Regularly checking the quantity of stored grain in warehouses is essential for the grain safety of a country.However,current manual inspection ways fail to get real-time measurement results and require spending a lot ...Regularly checking the quantity of stored grain in warehouses is essential for the grain safety of a country.However,current manual inspection ways fail to get real-time measurement results and require spending a lot of manpower and resources.In this paper,we proposed a computer vision-based method to automatically monitor the change in grain quantity of a granary.The proposed method was motivated from the observation that warehouse managers can use a camera to remotely monitor the grain security of a granary,which determines whether grain quantity is reduced by checking the distance between the grain surface and the grain loading line at the outlet of a granary.To this end,images were first captured by a camera,and a two-level spatial constraints-based SVM classifier was learned to detect the grain surface and the grain loading line of the images.During the test phase,the detected result of a test image obtained by SVM was further refined by Grab Cut with higher order potentials to get the more accurate segmentation result.Finally,the area between the grain surface and the grain loading line was calculated,and then compared with the previous measured one to determine whether the grain surface had dropped.The experiment results validate the effectiveness of the two-level spatial constraints SVM and the strategy for monitoring the change in grain quantity.展开更多
The quality of grain changes continually during its storage, including the change of its physical characteristics and physiological characteristics. This paper presents an approach to predict the change of the quality...The quality of grain changes continually during its storage, including the change of its physical characteristics and physiological characteristics. This paper presents an approach to predict the change of the quality of stored grain with data mining technology. Logistic Regression, Decision Tree and Muitilayer Perceptron are applied to predict the change of the grains' quality control index and to obtain the grains' quality change probability. The grain sampling with higher probability can be processed earlier.展开更多
Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was con...Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was conducted from 2006 through 2008 in arid northwestern China to determine the effects of four tillage systems on soil properties, root development, water-use efficiency, and grain yield of winter wheat (Triticum aestivum L.). The cultivar Fan 13 was grown under four tillage systems:conventional tillage (CT) without wheat stubble, no-tillage without wheat stubble mulching (NT), no-tillage with wheat stubble standing (NTSS), and no-tillage with wheat stubble mulching (NTS). The soil bulk density (BD) under CT system increased gradually from sowing to harvest, but that in NT, NTSS, and NTS systems had little change. Compared to the CT system, the NTSS and NTS systems improved total soil water storage (0-150 cm) by 6.1-9.6 and 10.5- 15.3% before sowing, and by 2.2-8.9 and 13.0-15.1% after harvest, respectively. The NTSS and NTS systems also increased mean dry root weight density (DRWD) as compared to CT system. The NTS system significantly improved water-use efficiency by 17.2-17.5% and crop yield by 15.6-16.8%, and the NTSS system improved that by 7.8-9.6 and 7.0-12.8%, respectively, compared with the CT system. Our results suggested that Chinese farmers should consider adopting conservation tillage practices in arid northwestern China because of benefits to soil bulk density, water storage, root system, and winter wheat yield.展开更多
The prevention of fungal spoilage is an essential consideration in wheat storage.Recent studies have revealed that volatile organic compounds(VOCs),possibly with natural fungicidal properties,could be produced from st...The prevention of fungal spoilage is an essential consideration in wheat storage.Recent studies have revealed that volatile organic compounds(VOCs),possibly with natural fungicidal properties,could be produced from stored wheat grains.In this study,the antifungal effect of hexanal,a main component of VOCs from stored wheat,against spoilage fungi on agar plate and in high-moisture wheat grains were investigated via the gas fumigation method.And the impact of hexanal fumigation on grain quality was evaluated through analysis of the malondialdehyde content,fatty acid values,germination percentages and vigor of 16%and 18%moisture wheat grains fumigated with 1.66,2.49,and 3.31 mmol/L hexanal vapor.The results of in vitro antifungal experiments on agar plates revealed that the minimum inhibitory concentration and minimum fungicidal(fatal)concentration of hexanal against the five fungi were 4–14 folds and 4–7 folds lower than those of propionic acid,respectively.The fungal spoilage of high-moisture wheat grains inoculated with pure fungal spores and with naturally occurring fungi could be completely inhibited by 1.66 mmol/L hexanal vapor.During 5-week storage of high-moisture wheat grains fumigated with 1.66,2.49,and 3.31 mmol/L hexanal vapor,the malondialdehyde content in high-moisture wheat grains did not change significantly in all samples,and fatty acid values were slightly higher in 18%moisture wheat than in 16%moisture wheat.The germination percentages and vigor of wheat samples decreased with increased hexanal vapor concentrations and moisture content.These results indicated that hexanal fumigation could be used as an alternative chemical control method to prevent the fungal spoilage of postharvest wheat.展开更多
Decaleside II is the novel trisaccharide isolated from the edible roots of Decalepis hamiltonii that belong to a new class of natural insecticides. In the present study we have investigated grain protection potential ...Decaleside II is the novel trisaccharide isolated from the edible roots of Decalepis hamiltonii that belong to a new class of natural insecticides. In the present study we have investigated grain protection potential and persistence activity of Decaleside II against stored-product pests such as Rhyzopertha dominica, Sitophilus oryzae, Tribolium castaneum and Callosobruchus chinensis. Decaleside II usually increased parental mortality and reduced F1 progeny in residual toxicity bioassays. At 7 days of the storage period of treated grains and pulses, the mortality was 100% of all four stored product insects. Both wheat and green gram treated with Decaleside II were totally free from infestation for the longer period of storage up to 210 d. Decaleside II being a natural trisaccharide, does not pose any toxic hazard from the treated grain and the lack of toxicity is attributed to the 1, 4 α linkage of the sugars which are easily hydrolyzed by the digestive enzymes such as glucosidases. Therefore, the insect selectivity and mammalian safety of Decaleside II make them highly suitable for use as novel grain protectants of natural origin.展开更多
This paper introduces the status quo of the system structure of direct subsidy for grain production in China,and analyses the function and essence of direct subsidy for grain production in China as follows:the functio...This paper introduces the status quo of the system structure of direct subsidy for grain production in China,and analyses the function and essence of direct subsidy for grain production in China as follows:the function of direct subsidy for grain production in China is to protect and promote the development of food industry,ensure food supply and national food security,protect grain growers' interests,and maintain the dominant position of national food trade;the essence of direct subsidy for grain production is the compensation for grain producers' reasonable interests,the compensation for positive externality of grain production,and social costs of adjusting equilibrium between food supply and demand.We discuss the problems existing in the system of direct subsidy for grain production in China and put forward corresponding countermeasures as follows:first,adhere to improving synergetic system of direct subsidy for grain production;second,adjust the direct subsidy method of grain production;third,establish long-term mechanism of subsidy for grain production;fourth,promote the information-based service level of the system of direct subsidy for grain production.展开更多
A wide range of insect pests attacks stored sorghum grains and the significant damage in grain weight loss and negative impact on the nutritional values of sorghum are caused with the activities of these pests. The in...A wide range of insect pests attacks stored sorghum grains and the significant damage in grain weight loss and negative impact on the nutritional values of sorghum are caused with the activities of these pests. The insecticides, especially from organophosphate group (OP), are still used to prevent damage of sorghum grains during storage period. One of the possible replacements for OP and other synthetic insecticides is a natural and safe diatomaceous earth (DE). The primary objectives of this study was conducting the laboratory experiments with enhanced DE Protect-lt on Sitophilus oryzae (L.), Rhyzopertha dominica (Fab.) and Tribolium castaneum (Herbst.) to find out the effective concentrations and to determine the effect of applicable concentration of DE on bulk density (test weight) of sorghum grains. The effect of Protect-it on bulk density was measured at 1,000 ppm. After the exposure of S. oryzae, R. dominica and T castaneum to treated grains during 13 days, lethal dosis that causes 90% mortality (LD90) were 811 ppm, 1,102 ppm and 1,244 ppm, respectively. After exposure of 8 days the concentration of 1,000 ppm generated the mortality ofS. oryzae 100% and for R. dominica and T.castaneum for over 99%. The same concentration had a minimal effect on the reduction of sorghum bulk density (for 1.95% only).展开更多
Financial distribution to compensate grain production reflects governmental macro-control on grain production and supply. With the reference of agricultural basic theory,agricultural multi-function theory,economic ext...Financial distribution to compensate grain production reflects governmental macro-control on grain production and supply. With the reference of agricultural basic theory,agricultural multi-function theory,economic externality theory,public finance and other theories,this article points out that direct subsidies for grain production is reasonable and necessary with six main theoretical basis,namely fundamentality,multi-function,positive externality of grain production,particularity of grain supply and demand,grain safety being closely linked with national security and basic function of service-oriented government.展开更多
Although it is recognized that the post-harvest system is most responsible for the loss of soybean quality,the real impact of this loss is still unknown.Brazilian regulation allows 15%and 30%of broken soybean for grou...Although it is recognized that the post-harvest system is most responsible for the loss of soybean quality,the real impact of this loss is still unknown.Brazilian regulation allows 15%and 30%of broken soybean for group I and group II(quality groups),respectively.However,the industry is not informed about the loss in the quality parameters of soybeans and its impacts during long-term storage.Therefore,the objective was to evaluate the effect of the breakage kernel percentage of soybean stored for 12 months.Content of 15% of breakage kernels did not affect soybean quality.However,content of 30% of breakage kernels affected significantly soybean quality,which was evidenced by the increase of up to 75% in moldy soybeans,72% in acidity,50% in leached solids,27% in electrical conductivity,and the decrease of up to 12% in soluble protein,6.4% in germination and 3.5% in thousand kernel weight after 8 months of storage.Although the legislation establishes a percentage limit,it is recommended to store soybeans with up to 15% breakage kernels.On the contrary,values higher than that can cause a significant reduction in soybean quality,resulting in commercial losses.展开更多
基金Supported by the Fund Project for the Scientific Undertakings in Public Interest of Liaoning Province(20170046)the Initiation Project of Economic and Social Development of Liaoning Province(2018lslktyb)the Initiation Project of Economic and Social Development of Shenyang City in 2017(SYSK2017-13-11)~~
文摘Grain storage security is big issue related to national economy and the people's livelihood, as well as one of the most important strategic requirements in China. Under the background of grain supply-side structural reform, this paper analyzed the grain storage security countermeasures under the new normal conditions with "grain storage technology", one of the national grain security strategies of China during the 13th Five-year Plan, as the guiding ideology, from the perspectives of scientific technologies, policy supports, government supports and talent construction, so as to provide supports for the storage enterprises with vulnerable technological links. In addition, the food security issues discussed in this paper could be a helping hand in improving people's living quality, enhancing grain storage ecological quality, promoting grain green storage quality security, and be of important and profound strategic significance to enhance the macro-control capability of the government, maintain social stability and people's health.
文摘In China, the quantity of farmer's grain storage covers about 40% of the total grain yield every year. While, the losses of farms' grain storage are up to 8%, which is due to the lack of grain storage facility and technology. The losses of farmer's grain storage could reach nearly 20 million tons every year. In this paper, the current situation and development of grain storage technology and facility for Chinese farmers were presented. And a series of policy and research work for reducing the losses of farms' grain storage was introduced. The large scale farmers are now developing quickly in China, the new storage warehouse and mechanized facility should be developed adaptively. So, the new storage technology and policy to meet the need of large scale farmers were also introduced in this paper.
文摘Grain security guarantees national security.China has many widely distributed grain depots to supervise grain storage security.However,this has led to a lack of regulatory capacity and manpower.Amid the development of reserve-level information technology,big data supervision of grain storage security should be improved.This study proposes big data research architecture and an analysis model for grain storage security;as an example,it illustrates the supervision of the grain loss problem in storage security.The statistical analysis model and the prediction and clustering-based model for grain loss supervision were used to mine abnormal data.A combination of feature extraction and feature selection reduction methods were chosen for dimensionality.A comparative analysis showed that the nonlinear prediction model performed better on the grain loss data set,with R2 of 87.21%,87.83%,91.97%,and 89.40%for Gradient Boosting Regressor(GBR),Random Forest,Decision Tree,XGBoost regression on test sets,respectively.Nineteen abnormal data were filtered out by GBR combined with residuals as an example.The deep learning model had the best performance on the mean absolute error,with an R2 of 85.14%on the test set and only one abnormal data identified.This is contrary to the original intention of finding as many anomalies as possible for supervisory purposes.Five classes were generated using principal component analysis dimensionality reduction combined with Density-Based Spatial Clustering of Applications with Noise(DBSCAN)clustering,with 11 anomalous data points screened by adding the amount of normalized grain loss.Based on the existing grain information system,this paper provides a supervision model for grain storage that can help mine abnormal data.Unlike the current post-event supervision model,this study proposes a pre-event supervision model.This study provides a framework of ideas for subsequent scholarly research;the addition of big data technology will help improve efficient supervisory capacity in the field of grain supervision.
文摘This paper considers the problem of simulating the humidity distributions of a grain storage system. The distributions are described by partial differential equations(PDE). It is quite difficult to obtain the humidity profiles from the PDE model. Hence, a discretization method is applied to obtain an equivalent ordinary differential equation model. However, after applying the discretization technique, the cost of solving the system increases as the size increases to a few thousands. It may be noted that after discretization,the degree of freedom of the system remain the same while the order increases. The large dynamic model is reduced using a proper orthogonal decomposition based technique and an equivalent model but of much reduced size is obtained. A controller based on optimal control theory is designed to obtain an input such that the output humidity reaches a desired profile and also its stability is analyzed.Numerical results are presented to show the validity of the reduced model and possible further extensions are identified.
文摘The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to repeated freezing-thawing and wetting-drying, which determines the possibility of changing their grain-size composition and structure. Experimental studies in laboratory conditions on the influence of cyclic freezing-thawing (FTC) and wetting-drying (WDC) on the quality indicators of lignites have been carried out, their granulometric (fractional) composition has been studied. Freezing-thawing cycle conditions are as follows (FTC): minimum exposure temperature: -20°C;maximum: +5°C;relative humidity: 30%;number of processing cycles: 3. Wetting-drying cycles are as follows (WDC): drying temperatures are +20, +40, +60, +80°C, drying time 90 minutes, the coals are further subjected to rain (soaking) for a period of water saturation to humidity of 30% - 40% and dry again. The number of wetting-drying cycles is 3 times. The tests have revealed the destructive effects of FTC and WDC on the samples of lower metamorphic grade coal, and the cycles of wet-dry lead to the much higher yield of fine sizes (-6+0;-13+0 mm) than the cycles of freeze-thaw. Furthermore, it is found that the increase in the yield of fines depends on the heating temperature: coal disintegration proceeds more intensively at a higher temperature of drying.
文摘Post-harvest storage losses (PHLs) remain significant in Sub-Saharan Africa (SSA) due to several factors mainly insect pests and molds. Hermetic storage technologies (HSTs) are being promoted to address these storage losses. In Uganda, HSTs were first introduced in 2012. However, its use among farming households remains low today. Data were collected from 306 smallholder farmers from four districts of Northern Uganda using a pre-tested semi-structured questionnaire to understand their knowledge, use, and constraints to the adoption of hermetic storage. A multivariate Logit regression model was used to find the significance of the factors affecting adoption. Results showed low awareness and use of hermetic storage among smallholder farmers. Only 53.3% of the interviewed farmers were aware of the use of hermetic storage for grain storage. The SuperGrain bag was the most known form of hermetic storage (35.3%), followed by the Purdue Improved Crop Storage (PICS) bag (34.9%), metallic silo (15.5%), and plastic silo (14.4%). Hermetic storage use was even lower as only 17.6% of the surveyed farmers were using one or more forms of hermetic storage to store their grains. Insect pest management without chemical insecticides was the main reason (83.1%) for hermetic storage use. About 75.5% of those aware of hermetic storage had received training in the technology. Hermetic storage use in farming households led to improved food availability, household income, and nutrition. Lack of local availability (50.2%), high costs (37.8%), and inadequate knowledge (6.9%) were the main constraints hindering the adoption of hermetic storage in Northern Uganda. The logit regression models showed that only training in hermetic storage significantly (p = 0.002) affected farmers’ decision to adopt hermetic storage. Understanding the factors that constrain the adoption of HSTs could provide policymakers with important information to initiate and design policies and programs aimed at reducing crop storage losses.
基金supported by Natural Science Project of Henan Science and Technology Department(Grant 162102210189,132102210494)Special Fund for Basic Scientific Research of Henan University of Technology(Grant 2016QNJH25)+1 种基金High-level Personnel Fund of Henan Province(Grant 21476062,31401918)Open fund of Key Laboratory of Grain Information Processing and Control(Grant KFJJ-2018-101)。
文摘Regularly checking the quantity of stored grain in warehouses is essential for the grain safety of a country.However,current manual inspection ways fail to get real-time measurement results and require spending a lot of manpower and resources.In this paper,we proposed a computer vision-based method to automatically monitor the change in grain quantity of a granary.The proposed method was motivated from the observation that warehouse managers can use a camera to remotely monitor the grain security of a granary,which determines whether grain quantity is reduced by checking the distance between the grain surface and the grain loading line at the outlet of a granary.To this end,images were first captured by a camera,and a two-level spatial constraints-based SVM classifier was learned to detect the grain surface and the grain loading line of the images.During the test phase,the detected result of a test image obtained by SVM was further refined by Grab Cut with higher order potentials to get the more accurate segmentation result.Finally,the area between the grain surface and the grain loading line was calculated,and then compared with the previous measured one to determine whether the grain surface had dropped.The experiment results validate the effectiveness of the two-level spatial constraints SVM and the strategy for monitoring the change in grain quantity.
文摘The quality of grain changes continually during its storage, including the change of its physical characteristics and physiological characteristics. This paper presents an approach to predict the change of the quality of stored grain with data mining technology. Logistic Regression, Decision Tree and Muitilayer Perceptron are applied to predict the change of the grains' quality control index and to obtain the grains' quality change probability. The grain sampling with higher probability can be processed earlier.
基金funded by the Ph D Programs Foundation, Ministry of Education, China(20106202110002)the National Public Welfare Foundation for Industry Scheme of China (201103001)the National Natural Science Foundation of China (201131160265)
文摘Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was conducted from 2006 through 2008 in arid northwestern China to determine the effects of four tillage systems on soil properties, root development, water-use efficiency, and grain yield of winter wheat (Triticum aestivum L.). The cultivar Fan 13 was grown under four tillage systems:conventional tillage (CT) without wheat stubble, no-tillage without wheat stubble mulching (NT), no-tillage with wheat stubble standing (NTSS), and no-tillage with wheat stubble mulching (NTS). The soil bulk density (BD) under CT system increased gradually from sowing to harvest, but that in NT, NTSS, and NTS systems had little change. Compared to the CT system, the NTSS and NTS systems improved total soil water storage (0-150 cm) by 6.1-9.6 and 10.5- 15.3% before sowing, and by 2.2-8.9 and 13.0-15.1% after harvest, respectively. The NTSS and NTS systems also increased mean dry root weight density (DRWD) as compared to CT system. The NTS system significantly improved water-use efficiency by 17.2-17.5% and crop yield by 15.6-16.8%, and the NTSS system improved that by 7.8-9.6 and 7.0-12.8%, respectively, compared with the CT system. Our results suggested that Chinese farmers should consider adopting conservation tillage practices in arid northwestern China because of benefits to soil bulk density, water storage, root system, and winter wheat yield.
基金supported by the NationalNatural Science Foundation of China(Project No.31772023)the National Key Research and Development Project of China(Project Nos.2017YFC1600903 and 2017YFD0401404)+1 种基金the National Key Research and Development Project of China(Project No.2019YFC1605303-04)the Scientific Research foundation of Henan University of Technology(Project No.2018RCJH14).
文摘The prevention of fungal spoilage is an essential consideration in wheat storage.Recent studies have revealed that volatile organic compounds(VOCs),possibly with natural fungicidal properties,could be produced from stored wheat grains.In this study,the antifungal effect of hexanal,a main component of VOCs from stored wheat,against spoilage fungi on agar plate and in high-moisture wheat grains were investigated via the gas fumigation method.And the impact of hexanal fumigation on grain quality was evaluated through analysis of the malondialdehyde content,fatty acid values,germination percentages and vigor of 16%and 18%moisture wheat grains fumigated with 1.66,2.49,and 3.31 mmol/L hexanal vapor.The results of in vitro antifungal experiments on agar plates revealed that the minimum inhibitory concentration and minimum fungicidal(fatal)concentration of hexanal against the five fungi were 4–14 folds and 4–7 folds lower than those of propionic acid,respectively.The fungal spoilage of high-moisture wheat grains inoculated with pure fungal spores and with naturally occurring fungi could be completely inhibited by 1.66 mmol/L hexanal vapor.During 5-week storage of high-moisture wheat grains fumigated with 1.66,2.49,and 3.31 mmol/L hexanal vapor,the malondialdehyde content in high-moisture wheat grains did not change significantly in all samples,and fatty acid values were slightly higher in 18%moisture wheat than in 16%moisture wheat.The germination percentages and vigor of wheat samples decreased with increased hexanal vapor concentrations and moisture content.These results indicated that hexanal fumigation could be used as an alternative chemical control method to prevent the fungal spoilage of postharvest wheat.
文摘Decaleside II is the novel trisaccharide isolated from the edible roots of Decalepis hamiltonii that belong to a new class of natural insecticides. In the present study we have investigated grain protection potential and persistence activity of Decaleside II against stored-product pests such as Rhyzopertha dominica, Sitophilus oryzae, Tribolium castaneum and Callosobruchus chinensis. Decaleside II usually increased parental mortality and reduced F1 progeny in residual toxicity bioassays. At 7 days of the storage period of treated grains and pulses, the mortality was 100% of all four stored product insects. Both wheat and green gram treated with Decaleside II were totally free from infestation for the longer period of storage up to 210 d. Decaleside II being a natural trisaccharide, does not pose any toxic hazard from the treated grain and the lack of toxicity is attributed to the 1, 4 α linkage of the sugars which are easily hydrolyzed by the digestive enzymes such as glucosidases. Therefore, the insect selectivity and mammalian safety of Decaleside II make them highly suitable for use as novel grain protectants of natural origin.
基金Supported by Southwest University Scientific Research Foundation(SWU10306)The Fundamental Research Funds for the Central Universities (SWU1109039)
文摘This paper introduces the status quo of the system structure of direct subsidy for grain production in China,and analyses the function and essence of direct subsidy for grain production in China as follows:the function of direct subsidy for grain production in China is to protect and promote the development of food industry,ensure food supply and national food security,protect grain growers' interests,and maintain the dominant position of national food trade;the essence of direct subsidy for grain production is the compensation for grain producers' reasonable interests,the compensation for positive externality of grain production,and social costs of adjusting equilibrium between food supply and demand.We discuss the problems existing in the system of direct subsidy for grain production in China and put forward corresponding countermeasures as follows:first,adhere to improving synergetic system of direct subsidy for grain production;second,adjust the direct subsidy method of grain production;third,establish long-term mechanism of subsidy for grain production;fourth,promote the information-based service level of the system of direct subsidy for grain production.
文摘A wide range of insect pests attacks stored sorghum grains and the significant damage in grain weight loss and negative impact on the nutritional values of sorghum are caused with the activities of these pests. The insecticides, especially from organophosphate group (OP), are still used to prevent damage of sorghum grains during storage period. One of the possible replacements for OP and other synthetic insecticides is a natural and safe diatomaceous earth (DE). The primary objectives of this study was conducting the laboratory experiments with enhanced DE Protect-lt on Sitophilus oryzae (L.), Rhyzopertha dominica (Fab.) and Tribolium castaneum (Herbst.) to find out the effective concentrations and to determine the effect of applicable concentration of DE on bulk density (test weight) of sorghum grains. The effect of Protect-it on bulk density was measured at 1,000 ppm. After the exposure of S. oryzae, R. dominica and T castaneum to treated grains during 13 days, lethal dosis that causes 90% mortality (LD90) were 811 ppm, 1,102 ppm and 1,244 ppm, respectively. After exposure of 8 days the concentration of 1,000 ppm generated the mortality ofS. oryzae 100% and for R. dominica and T.castaneum for over 99%. The same concentration had a minimal effect on the reduction of sorghum bulk density (for 1.95% only).
基金Supported by Subsidized Project Launched by Scientific Research Funds of Southwest University:Study on the Performance of Direct Subsidies for Grain Production(SWU10306)Fundamental Research Funds for the Central Universities:Study on Standards of Direct Subsidies for Grain Production(SWU1109039)
文摘Financial distribution to compensate grain production reflects governmental macro-control on grain production and supply. With the reference of agricultural basic theory,agricultural multi-function theory,economic externality theory,public finance and other theories,this article points out that direct subsidies for grain production is reasonable and necessary with six main theoretical basis,namely fundamentality,multi-function,positive externality of grain production,particularity of grain supply and demand,grain safety being closely linked with national security and basic function of service-oriented government.
基金Coordenacao de Aperfeicoamento de Pessoal de Nível Superior - Brasil (CAPES)Fundacao de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)+2 种基金Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)financed in part by Coordenacao de Aperfeicoamento de Pessoal de Nível Superior-Brasil(CAPES)-Finance code 001,Fundacao de Amparoa Pesquisa do Estado do Rio Grande do Sul(FAPERGS)-Finances code 17/2551-0000935-5,22/2551-0001051-2,21/2551-0002255-8Conselho Nacional de Desenvolvimento Científico e Tecnologico(CNPq)-Finance codes 205518/2018-4,312603/2018-5.
文摘Although it is recognized that the post-harvest system is most responsible for the loss of soybean quality,the real impact of this loss is still unknown.Brazilian regulation allows 15%and 30%of broken soybean for group I and group II(quality groups),respectively.However,the industry is not informed about the loss in the quality parameters of soybeans and its impacts during long-term storage.Therefore,the objective was to evaluate the effect of the breakage kernel percentage of soybean stored for 12 months.Content of 15% of breakage kernels did not affect soybean quality.However,content of 30% of breakage kernels affected significantly soybean quality,which was evidenced by the increase of up to 75% in moldy soybeans,72% in acidity,50% in leached solids,27% in electrical conductivity,and the decrease of up to 12% in soluble protein,6.4% in germination and 3.5% in thousand kernel weight after 8 months of storage.Although the legislation establishes a percentage limit,it is recommended to store soybeans with up to 15% breakage kernels.On the contrary,values higher than that can cause a significant reduction in soybean quality,resulting in commercial losses.