It is observed contamination and subsequent growth of various types of mycotoxins in the production and processing of grain and non-grain crops. The contamination of grain and non-grain cereals crops harvest was analy...It is observed contamination and subsequent growth of various types of mycotoxins in the production and processing of grain and non-grain crops. The contamination of grain and non-grain cereals crops harvest was analyzed. The aim of this research is using of microwave energy to disinfect grains of harvest and giving new properties to the grains and plants materials. The author has presented researches of the grains disinfection, during seedbed preparation and post processing. Rational parameters of heating rates of different biological objects were identified, revealed their dependence and impact on infection pathogens, through using of microwave energy technology. The author found a reduction of the number of pathogenic microbes and organisms at the various stages of processing agricultural products during using of microwave energy, and found new qualitative indicators of the products properties.展开更多
2A12 Al alloy was suffered from equal-channel angular pressing(ECAP) in this experiment. The influence of ECAP pass number on ultimate strength(UTS), hardness and elongation was studied. The results show that duri...2A12 Al alloy was suffered from equal-channel angular pressing(ECAP) in this experiment. The influence of ECAP pass number on ultimate strength(UTS), hardness and elongation was studied. The results show that during ECAP the number of sample passing through the channels is very important for mechanical properties and microstructure refinement. ECAP not only increases their plasticity and hardness but also leads to refined grain. But the elongation reduces from 17.5% tol 1.8 % after 1 pass ECAP, then almost tends to be unchanged with the increasing of pass number. The value of ultimate strength of 2A12 Al alloy increases by 135%, hardness by 51%, and ultra fine grains of about 200 nm can be observed after 8 passes.展开更多
Ultrafine grained AA6063-SiCnpnanocomposites with 1, 5 and 10 vol.% SiCnphave been fabricated by a novel powder metallurgy process. This process combines high energy ball milling of a mixture of 6063 alloy granules ma...Ultrafine grained AA6063-SiCnpnanocomposites with 1, 5 and 10 vol.% SiCnphave been fabricated by a novel powder metallurgy process. This process combines high energy ball milling of a mixture of 6063 alloy granules made from machining chips and Si C nanoparticles and thermomechanical powder consolidation by spark plasma sintering and hot extrusion. The microstructure and tensile mechanical properties of the samples were investigated in detail. Increasing the Si C nanoparticle content from 1 to 10 vol.%,the yield strength and ultimate tensile strength increased from 296 and 343 MPa to 545 and 603 MPa respectively, and the elongation to fracture decreased from 10.0%, to 2.3%. As expected, a higher Si C nanoparticle content generates a stronger inhibiting effect to grain growth during the thermomechanical powder consolidation process. Analysis of the contributions of various strengthening mechanisms shows that a higher Si C nanoparticle content leads to a higher contribution from nanoparticle strengthening, but grain boundary strengthening still makes the largest contribution to the strength of the nanocomposite.When the Si C nanoparticle content increased to 10 vol.%, the failure of the nanocomposite was initiated at weakly-bonded interparticle boundaries(IPBs), indicating that with a high flow stress during tensile deformation, the failure of the material is more sensitive to the presence of weakly-bonded IPBs.展开更多
The present paper provides both experimental and DEM analyses of the filling and discharge of pea grains from a 3D flat-bottomed bin. In the DEM model, the fixed mean values of the experimentally determined single par...The present paper provides both experimental and DEM analyses of the filling and discharge of pea grains from a 3D flat-bottomed bin. In the DEM model, the fixed mean values of the experimentally determined single particle data, such as the particle density, Young's modulus, Poisson's ratio as well as the sliding and rolling friction coefficients were incorporated to analyse their effects on the macroscale indicators, such as the wall pressure, discharge velocities and material outflow parameters. The effect of rolling friction was studied based on the experimentally measured single particle rolling friction coefficient. This analysis is aimed at the quantitative prediction of flow parameters as related to the identification of material parameters.展开更多
文摘It is observed contamination and subsequent growth of various types of mycotoxins in the production and processing of grain and non-grain crops. The contamination of grain and non-grain cereals crops harvest was analyzed. The aim of this research is using of microwave energy to disinfect grains of harvest and giving new properties to the grains and plants materials. The author has presented researches of the grains disinfection, during seedbed preparation and post processing. Rational parameters of heating rates of different biological objects were identified, revealed their dependence and impact on infection pathogens, through using of microwave energy technology. The author found a reduction of the number of pathogenic microbes and organisms at the various stages of processing agricultural products during using of microwave energy, and found new qualitative indicators of the products properties.
基金the Science and Technological Program Plan of Shandong Province(No.2006GG3203005.2006GG2203006)the Science and Technological Program Plan of Jinan City(No.200705035)
文摘2A12 Al alloy was suffered from equal-channel angular pressing(ECAP) in this experiment. The influence of ECAP pass number on ultimate strength(UTS), hardness and elongation was studied. The results show that during ECAP the number of sample passing through the channels is very important for mechanical properties and microstructure refinement. ECAP not only increases their plasticity and hardness but also leads to refined grain. But the elongation reduces from 17.5% tol 1.8 % after 1 pass ECAP, then almost tends to be unchanged with the increasing of pass number. The value of ultimate strength of 2A12 Al alloy increases by 135%, hardness by 51%, and ultra fine grains of about 200 nm can be observed after 8 passes.
基金supported by the National Natural Science Foundation of China (No. 51271115)SJTU-UNSW Collaborative Research & Development Fund
文摘Ultrafine grained AA6063-SiCnpnanocomposites with 1, 5 and 10 vol.% SiCnphave been fabricated by a novel powder metallurgy process. This process combines high energy ball milling of a mixture of 6063 alloy granules made from machining chips and Si C nanoparticles and thermomechanical powder consolidation by spark plasma sintering and hot extrusion. The microstructure and tensile mechanical properties of the samples were investigated in detail. Increasing the Si C nanoparticle content from 1 to 10 vol.%,the yield strength and ultimate tensile strength increased from 296 and 343 MPa to 545 and 603 MPa respectively, and the elongation to fracture decreased from 10.0%, to 2.3%. As expected, a higher Si C nanoparticle content generates a stronger inhibiting effect to grain growth during the thermomechanical powder consolidation process. Analysis of the contributions of various strengthening mechanisms shows that a higher Si C nanoparticle content leads to a higher contribution from nanoparticle strengthening, but grain boundary strengthening still makes the largest contribution to the strength of the nanocomposite.When the Si C nanoparticle content increased to 10 vol.%, the failure of the nanocomposite was initiated at weakly-bonded interparticle boundaries(IPBs), indicating that with a high flow stress during tensile deformation, the failure of the material is more sensitive to the presence of weakly-bonded IPBs.
文摘The present paper provides both experimental and DEM analyses of the filling and discharge of pea grains from a 3D flat-bottomed bin. In the DEM model, the fixed mean values of the experimentally determined single particle data, such as the particle density, Young's modulus, Poisson's ratio as well as the sliding and rolling friction coefficients were incorporated to analyse their effects on the macroscale indicators, such as the wall pressure, discharge velocities and material outflow parameters. The effect of rolling friction was studied based on the experimentally measured single particle rolling friction coefficient. This analysis is aimed at the quantitative prediction of flow parameters as related to the identification of material parameters.