期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
An Outline of the Grand Unified Theory of Gauge Fields
1
作者 Bi Qiao 《Journal of Modern Physics》 CAS 2023年第3期212-326,共25页
This paper attempts to propose a grand unified guiding principle of gauge fields from the mathematical and physical picture of fiber bundles: it is believed that our universe may have more fundamental interactions tha... This paper attempts to propose a grand unified guiding principle of gauge fields from the mathematical and physical picture of fiber bundles: it is believed that our universe may have more fundamental interactions than the four fundamental interactions, and the gauge fields of these fundamental interactions are just a unified gauge potential on the fiber bundle manifold or the components connected to the bottom manifold, that is, our universe;these components can meet the transformation of gauge potential, and even can be transformed from a fundamental interaction gauge potential to another fundamental interaction gauge potential, and can be summarized into a unified equation, namely the expression of the generalized gauge equation, corresponding to the gauge transformation invariance;so gauge transformation invariance is a necessary condition to unify field theory, but quantization of field is not a necessary condition;the four (or more) fundamental interaction fields of the universe are unified into a universal gauge field defined by the connection of the principal fiber bundle on the cosmic base manifold. 展开更多
关键词 Gauge Field Principal Fiber Bundle Gauge Transformation Invariance grand unified theory of Physics
下载PDF
The Mysterius Fate of Stars (Past, Present and Future of the Universe)
2
作者 Gianni Donati 《Journal of Applied Mathematics and Physics》 2024年第4期1308-1320,共13页
The research on the collapse of stars, due to Gravity, after the depletion of the fusion fuel, engaged a number of famous guys as Eddington, Chandrasekhar, Schwarzschild and Oppenheimer in the years around 1910-1050. ... The research on the collapse of stars, due to Gravity, after the depletion of the fusion fuel, engaged a number of famous guys as Eddington, Chandrasekhar, Schwarzschild and Oppenheimer in the years around 1910-1050. During this period, Einstein was writing his field equation of general relativity (1923), Fermi, in a famous letter to Pauli, proposed the neutrino in beta decay theory (1930), Chadwick found the neutron, that granted him the Nobel price (1935) and Hubble (1929) proved that the Universe was expanding. As a result of that golden age, we remain with a lot of unsolved questions, due to the poor knowledge of the nature of the strong Nuclear Interaction of Gravity that controls the whole Universe. We have made an investigation on the nature of nuclear bond and gravitational attraction on the basis of available data and as a follow-up of Fermi famous research on Neutrino. Using this background, we hope to be able to explain or give some light to the evolution of stars, to the strange objects and phenomena captured or perceived by astronomers in the sky and speculated by theoretical physicists. 展开更多
关键词 Physics Gravity ASTROPHYSICS grand unified theory Nuclear Bond NEUTRINO Particle Physics
下载PDF
The Nuclear Clock Correction for Universal Gravitation
3
作者 Gianni Donati 《Journal of Applied Mathematics and Physics》 2023年第9期2576-2584,共9页
Science is losing some fixed references shifting from universality to relativity: time and space become space time, the meter is related to the velocity of light and the second is fixed by the ticketing of a Cesium at... Science is losing some fixed references shifting from universality to relativity: time and space become space time, the meter is related to the velocity of light and the second is fixed by the ticketing of a Cesium atom. In the case of Gravity, Nature was so friendly to Newton to allow him the writing of the Universal Gravitational Law, that changed the view of the Universe for the last three centuries. However, the way matter generates Gravity was unknown to Newton and the problem is still nowadays ignored by most scientists and remains the ultimate question mark of physics. We paid attention to the ticketing of all existing nuclides and found that the parameters of the neutronproton transformations are so precise, in describing these reactions, that can be considered universal constants. Instead, the emitted neutrino flux Fo is almost constant with a mean value of 6.668E20 neutrino per gram and second over the wide range of all nuclides with some deviation for lighter nuclei. This is the reason why Newton was able to find his Universal Gravitational Law and allows us today to state a relation of this flux with the Gauss constant G on the basis of nuclear properties. Moreover, it explains the mechanism that bodies use for their mutual attraction with a simplification of the three-body problem in celestial bodies computation. We have to remember that Newton model, with a fixed gravitational Gauss constant G, or the equivalent with a fixed neutrino flux Fo, have been used for the determination of the mass of the celestial bodies in motion with the implicit assumption that the gravitational and inertial mass are the same. In this paper we recognize the big difference in composition of the Sun and the gaseous planets compared to the terrestrial ones and show how the relatively small difference of the neutrino flux can change our vision of the Universe. 展开更多
关键词 Physics GRAVITY ASTROPHYSICS grand unified theory Nuclear Bond NEUTRINO Particle Physics
下载PDF
Overview of Hypersphere World-Universe Model 被引量:14
4
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 2016年第4期593-632,共40页
This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, ev... This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values. 展开更多
关键词 Hypersphere World-Universe Model Medium of the World Macroobjects Structure Gravitoelectromagnetism Dark Matter Particles Intergalactic Plasma Microwave Background Radiation Far-Infrared Background Radiation Gamma-Ray Background Radiation Cosmic Neutrino Background Q-Dependent Cosmological Parameters Emergent Phenomena grand unified theory CODATA
下载PDF
On the Relationship between Quarks and Electrons 被引量:1
5
作者 Ivan Nilsen 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2022年第3期681-689,共9页
In this study, the relationship between the elementary masses and elementary charges of quarks and electrons is considered in connection to the strong nuclear force and the color charge. The relationship is further co... In this study, the relationship between the elementary masses and elementary charges of quarks and electrons is considered in connection to the strong nuclear force and the color charge. The relationship is further considered in connection with the matter-antimatter asymmetry problem, and the decay times for different particles. The results strongly suggest that the quarks can be expressed as charge equalization of the electron, and that the coincidence of the charges has no alternative way to be unified with the elementary masses. To solve these problems, a new standard model with a second group of antiparticles is proposed, and the strong nuclear force is considered as an interaction between equalized electric charges instead of being a fundamental force, which also explains its short-ranged high strength. A new periodic table of elements is proposed to unfold the overall number of elementary charges that make up the atomic nucleus of different elements. 展开更多
关键词 Standard Model Elementary Particle Antiparticles Elementary Charge Elementary Mass Strong Nuclear Force grand unified theory
下载PDF
Notes on the Motion of Celestial Bodies
6
作者 Gianni Donati 《Journal of Applied Mathematics and Physics》 2020年第12期2757-2774,共18页
A novel method for the computation of the motion of multi-body systems is proposed against the traditional one, based on the dynamic exchange of attraction forces or using complex field equations, that hardly face two... A novel method for the computation of the motion of multi-body systems is proposed against the traditional one, based on the dynamic exchange of attraction forces or using complex field equations, that hardly face two-body problems. The Newton gravitational model is interpreted as the emission of neutrino/gravitons from celestial bodies that combine to yield a cumulative flux that interacts with single bodies through a momentum balance. The neutrino was first found by Fermi to justify the energy conservation in <i><span style="white-space:nowrap;">&#946;</span></i> decay and, using his model;we found that the emission of neutrino from matter is almost constant independently from the nuclides involved. This flux can be correlated to Gauss constant G, allowing the rebuilding of Newton law on the basis of nuclear data, the neutrino weight and the speed of light. Similarly to nature, we can therefore separate in the calculations the neutrino flux, that represents the gravitational field, is dependent on masses and is not bound to the number of bodies involved, from the motion of each body that, given the field, is independent of the mass of bodies themselves. The conflict between exchanges of forces is avoided, the mathematics is simplified, the computational time is reduced to seconds and the stability of result is guaranteed. The example of computation of the solar system including the Sun and eight planets over a period of one to one hundred years is reported, together with the evolution of the shape of the orbits. 展开更多
关键词 ASTROPHYSICS Celestial Mechanics Nuclear Physics Particle Physics GRAVITY grand unified theory
下载PDF
GRAND UNIFIED THEORIES
7
作者 K.A.Olive K.Agashe +208 位作者 C.Amsler M.Antonelli J.-F.Arguin D.M.Asner H.Baer H.R.Band R.M.Barnett T.Basaglia C.W.Bauer J.J.Beatty V.I.Belousov J.Beringer G.Bernardi S.Bethke H.Bichsel O.Biebe E.Blucher S.Blusk G.Brooijmans O.Buchmueller V.Burkert M.A.Bychkov R.N.Cahn M.Carena A.Ceccucci A.Cerr D.Chakraborty M.-C.Chen R.S.Chivukula K.Copic G.Cowan O.Dahl G.D'Ambrosio T.Damour D.de Florian A.de Gouvea T.DeGrand P.de Jong G.Dissertor B.A.Dobrescu M.Doser M.Drees H.K.Dreiner D.A.Edwards S.Eidelman J.Erler V.V.Ezhela W.Fetscher B.D.Fields B.Foster A.Freitas T.K.Gaisser H.Gallagher L.Garren H.-J.Gerber G.Gerbier T.Gershon T.Gherghetta S.Golwala M.Goodman C.Grab A.V.Gritsan C.Grojean D.E.Groom M.Grnewald A.Gurtu T.Gutsche H.E.Haber K.Hagiwara C.Hanhart S.Hashimoto Y.Hayato K.G.Hayes M.Heffner B.Heltsley J.J.Hernandez-Rey K.Hikasa A.Hocker J.Holder A.Holtkamp J.Huston J.D.Jackson K.F.Johnson T.Junk M.Kado D.Karlen U.F.Katz S.R.Klein E.Klempt R.V.Kowalewski F.Krauss M.Kreps B.Krusche Yu.V.Kuyanov Y.Kwon O.Lahav J.Laiho P.Langacker A.Liddle Z.Ligeti C.-J.Lin T.M.Liss L.Littenberg K.S.Lugovsky S.B.Lugovsky F.Maltoni T.Mannel A.V.Manohar W.J.Marciano A.D.Martin A.Masoni J.Matthews D.Milstead P.Molaro K.Monig F.Moortgat M.J.Mortonson H.Murayama K.Nakamura M.Narain P.Nason S.Navas M.Neubert P.Nevski Y.Nir L.Pape J.Parsons C.Patrignani J.A.Peacock M.Pennington S.T.Petcov Kavli IPMU A.Piepke A.Pomarol A.Quadt S.Raby J.Rademacker G.Raffel B.N.Ratcliff P.Richardson A.Ringwald S.Roesler S.Rolli A.Romaniouk L.J.Rosenberg J L.Rosner G.Rybka C.T.Sachrajda Y.Sakai G.P.Salam S.Sarkar F.Sauli O.Schneider K.Scholberg D.Scott V.Sharma S.R.Sharpe M.Silari T.Sjostrand P.Skands J.G.Smith G.F.Smoot S.Spanier H.Spieler C.Spiering A.Stahl T.Stanev S.L.Stone T.Sumiyoshi M.J.Syphers F.Takahashi M.Tanabashi J.Terning L.Tiator M.Titov N.P.Tkachenko N.A.Tornqvist D.Tovey G.Valencia G.Venanzoni M.G.Vincter P.Vogel A.Vogt S.P.Wakely W.Walkowiak C.W.Walter D.R.Ward G.Weiglein D.H.Weinberg E.J.Weinberg M.White L.R.Wiencke C.G.Wohl L.Wolfenstein J.Womersley C.L.Woody R.L.Workman A.Yamamoto W.-M.Yao G.P.Zeller O.V.Zenin J.Zhang R.-Y.Zhu F.Zimmermann P.A.Zyla G.Harper V.S.Lugovsky P.Schaffner 《Chinese Physics C》 SCIE CAS CSCD 2014年第9期270-278,共9页
Revised October 2011 by S. Raby (Ohio State University) 16.1. Grand Unification 16.1.1. Standard Model : An Introduction:
关键词 grand unified THEORIES
原文传递
JUNO sensitivity on proton decay p→νK^(+)searches 被引量:1
8
作者 Angel Abusleme Thomas Adam +608 位作者 Shakeel Ahmad Rizwan Ahmed Sebastiano Aiello Muhammad Akram 安丰鹏 安琪 Giuseppe Andronico Nikolay Anfimov Vito Antonelli Tatiana Antoshkina Burin Asavapibhop João Pedro Athayde Marcondes de André Didier Auguste Nikita Balashov Wander Baldini Andrea Barresi Davide Basilico Eric Baussan Marco Bellato Antonio Bergnoli Thilo Birkenfeld Sylvie Blin David Blum Simon Blyth Anastasia Bolshakova Mathieu Bongrand Clément Bordereau Dominique Breton Augusto Brigatti Riccardo Brugnera Riccardo Bruno Antonio Budano Mario Buscemi Jose Busto Ilya Butorov Anatael Cabrera Barbara Caccianiga 蔡浩 蔡啸 蔡严克 蔡志岩 Riccardo Callegari Antonio Cammi Agustin Campeny 曹传亚 曹国富 曹俊 Rossella Caruso Cédric Cerna 常劲帆 Yun Chang 陈平平 Po-An Chen 陈少敏 陈旭荣 Yi-Wen Chen 陈义学 陈羽 陈长 程捷 程雅苹 Alexey Chetverikov Davide Chiesa Pietro Chimenti Artem Chukanov Gérard Claverie Catia Clementi Barbara Clerbaux Selma Conforti Di Lorenzo Daniele Corti Flavio Dal Corso Olivia Dalager Christophe De La Taille 邓智 邓子艳 Wilfried Depnering Marco Diaz Xuefeng Ding 丁雅韵 Bayu Dirgantara Sergey Dmitrievsky Tadeas Dohnal Dmitry Dolzhikov Georgy Donchenko 董建蒙 Evgeny Doroshkevich Marcos Dracos Frédéric Druillole 杜然 杜书先 Stefano Dusini Martin Dvorak Timo Enqvist Heike Enzmann Andrea Fabbri Ulrike Fahrendholz 范东华 樊磊 方建 方文兴 Marco Fargetta Dmitry Fedoseev Li-Cheng Feng 冯启春 Richard Ford Amélie Fournier 甘浩男 Feng Gao Alberto Garfagnini Arsenii Gavrikov Marco Giammarchi Agnese Giaz Nunzio Giudice Maxim Gonchar 龚光华 宫辉 Yuri Gornushkin Alexandre Göttel Marco Grassi Christian Grewing Vasily Gromov 顾旻皓 谷肖飞 古宇 关梦云 Nunzio Guardone Maria Gul 郭聪 郭竞渊 郭万磊 郭新恒 郭宇航 Paul Hackspacher Caren Hagner 韩然 Yang Han Muhammad Sohaib Hassan 何苗 何伟 Tobias Heinz Patrick Hellmuth 衡月昆 Rafael Herrera 贺远强 侯少静 Yee Hsiung Bei-Zhen Hu 胡航 胡健润 胡俊 胡守扬 胡涛 胡宇翔 胡焯钧 黄春豪 黄桂鸿 黄翰雄 黄文昊 黄鑫 黄性涛 黄永波 惠加琪 霍雷 霍文驹 Cédric Huss Safeer Hussain Ara Ioannisian Roberto Isocrate Beatrice Jelmini Kuo-Lun Jen Ignacio Jeria 季筱璐 吉星曌 贾慧慧 贾俊基 蹇司玉 蒋荻 蒋炜 江晓山 金如意 荆小平 Cécile Jollet Jari Joutsenvaara Sirichok Jungthawan Leonidas Kalousis Philipp Kampmann 康丽 Rebin Karaparambil Narine Kazarian Amina Khatun Khanchai Khosonthongkee Denis Korablev Konstantin Kouzakov Alexey Krasnoperov Andre Kruth Nikolay Kutovskiy Pasi Kuusiniemi Tobias Lachenmaier Cecilia Landini Sébastien Leblanc Victor Lebrin Frederic Lefevre 雷瑞庭 Rupert Leitner Jason Leung 李德民 李飞 李福乐 李高嵩 李海涛 李慧玲 李佳褀 李梦朝 李民 李楠 李楠 李清江 李茹慧 黎山峰 李涛 李卫东 李卫国 李笑梅 李小男 李兴隆 李仪 李依宸 李玉峰 李兆涵 李志兵 李紫源 梁浩 梁昊 廖佳军 Daniel Liebau Ayut Limphirat Sukit Limpijumnong Guey-Lin Lin 林盛鑫 林韬 凌家杰 Ivano Lippi 刘芳 刘海东 刘宏邦 刘红娟 刘洪涛 刘绘 刘江来 刘金昌 刘敏 刘倩 刘钦 Runxuan Liu 刘双雨 刘树彬 刘术林 刘小伟 刘熙文 刘言 刘云哲 Alexey Lokhov Paolo Lombardi Claudio Lombardo Kai Loo 陆川 路浩奇 陆景彬 吕军光 路书祥 卢晓旭 Bayarto Lubsandorzhiev Sultim Lubsandorzhiev Livia Ludhova Arslan Lukanov 罗凤蛟 罗光 罗朋威 罗舒 罗武鸣 Vladimir Lyashuk 马帮争 马秋梅 马斯 马骁妍 马续波 Jihane Maalmi Yury Malyshkin Roberto Carlos Mandujano Fabio Mantovani Francesco Manzali 冒鑫 冒亚军 Stefano M.Mari Filippo Marini Sadia Marium Cristina Martellini Gisele Martin-Chassard Agnese Martini Matthias Mayer Davit Mayilyan Ints Mednieks 孟月 Anselmo Meregaglia Emanuela Meroni David Meyhöfer Mauro Mezzetto Jonathan Miller Lino Miramonti Paolo Montini Michele Montuschi Axel Müller Massimiliano Nastasi Dmitry V.Naumov Elena Naumova Diana Navas-Nicolas Igor Nemchenok Minh Thuan Nguyen Thi 宁飞鹏 宁哲 Hiroshi Nunokawa Lothar Oberauer Juan Pedro Ochoa-Ricoux Alexander Olshevskiy Domizia Orestano Fausto Ortica Rainer Othegraven Alessandro Paoloni Sergio Parmeggiano 裴亚田 Nicomede Pelliccia 彭安国 彭海平 Frédéric Perrot Pierre-Alexandre Petitjean Fabrizio Petrucci Oliver Pilarczyk Luis Felipe Piñeres Rico Artyom Popov Pascal Poussot Wathan Pratumwan Ezio Previtali 齐法制 祁鸣 钱森 钱小辉 钱圳 乔浩 秦中华 丘寿康 Muhammad Usman Rajput Gioacchino Ranucci Neill Raper Alessandra Re Henning Rebber Abdel Rebii 任斌 任杰 Barbara Ricci Mariam Rifai Markus Robens Mathieu Roche Narongkiat Rodphai Aldo Romani Bedřich Roskovec Christian Roth 阮向东 阮锡超 Saroj Rujirawat Arseniy Rybnikov Andrey Sadovsky Paolo Saggese Simone Sanfilippo Anut Sangka Nuanwan Sanguansak Utane Sawangwit Julia Sawatzki Fatma Sawy Michaela Schever Cédric Schwab Konstantin Schweizer Alexandr Selyunin Andrea Serafini Giulio Settanta Mariangela Settimo 邵壮 Vladislav Sharov Arina Shaydurova 石京燕 史娅楠 Vitaly Shutov Andrey Sidorenkov FedorŠimkovic Chiara Sirignano Jaruchit Siripak Monica Sisti Maciej Slupecki Mikhail Smirnov Oleg Smirnov Thiago Sogo-Bezerra Sergey Sokolov Julanan Songwadhana Boonrucksar Soonthornthum Albert Sotnikov OndřejŠrámek Warintorn Sreethawong Achim Stahl Luca Stanco Konstantin Stankevich DušanŠtefánik Hans Steiger Jochen Steinmann Tobias Sterr Matthias Raphael Stock Virginia Strati Alexander Studenikin 孙世峰 孙希磊 孙勇杰 孙永昭 Narumon Suwonjandee Michal Szelezniak 唐健 唐强 唐泉 唐晓 Alexander Tietzsch Igor Tkachev Tomas Tmej Marco Danilo Claudio Torri Konstantin Treskov Andrea Triossi Giancarlo Troni Wladyslaw Trzaska Cristina Tuve Nikita Ushakov Johannes van den Boom Stefan van Waasen Guillaume Vanroyen Vadim Vedin Giuseppe Verde Maxim Vialkov Benoit Viaud Cornelius Moritz Vollbrecht Cristina Volpe Vit Vorobel Dmitriy Voronin Lucia Votano Pablo Walker 王彩申 Chung-Hsiang Wang 王恩 王国利 王坚 王俊 王坤宇 汪璐 王美芬 王孟 王萌 王瑞光 王思广 王维 王为 王文帅 王玺 王湘粤 王仰夫 王耀光 王义 王忆 王贻芳 王元清 王玉漫 王喆 王铮 王志民 王综轶 Muhammad Waqas Apimook Watcharangkool 韦良红 魏微 韦雯露 魏亚东 温凯乐 温良剑 Christopher Wiebusch Steven Chan-Fai Wong Bjoern Wonsak 吴帝儒 吴群 吴智 Michael Wurm Jacques Wurtz Christian Wysotzki 习宇飞 夏冬梅 Xiang Xiao 谢小川 谢宇广 谢章权 邢志忠 续本达 徐程 徐东莲 徐繁荣 许杭锟 徐吉磊 徐晶 徐美杭 徐音Yu Xu 闫保军 Taylor Yan 闫文奇 严雄波 Yupeng Yan 杨安波 杨长根 杨成峰 杨欢 杨洁 杨雷 杨晓宇 杨翊凡 Yifan Yang 姚海峰 Zafar Yasin 叶佳璇 叶梅 叶子平 Ugur Yegin Frédéric Yermia 易培淮 尹娜 尹翔伟 尤郑昀 俞伯祥 余炽业 喻纯旭 余泓钊 于淼 于向辉 于泽源 于泽众 袁成卓 袁影 袁振雄 岳保彪 Noman Zafar Andre Zambanini Vitalii Zavadskyi 曾珊 曾婷轩 曾裕达 占亮 张爱强 张飞洋 张国庆 张海琼 张宏浩 张家梁 张家文 张杰 张金 张景波 张金楠 张鹏 张清民 张石其 张澍 张涛 张晓梅 张鑫 张玄同 张学尧 张岩 张银鸿 张易于 张永鹏 张宇 张圆圆 张玉美 张振宇 张志坚 赵凤仪 赵洁 赵荣 赵书俊 赵天池 郑冬琴 郑华 郑阳恒 钟伟荣 周静 周莉 周楠 周顺 周彤 周详 朱江 朱康甫 朱科军 朱志航 庄博 庄红林 宗亮 邹佳恒 JUNO Collaboration 《Chinese Physics C》 SCIE CAS CSCD 2023年第11期7-22,共16页
The Jiangmen Underground Neutrino Observatory(JUNO)is a large liquid scintillator detector designed to explore many topics in fundamental physics.In this study,the potential of searching for proton decay in the p→νK... The Jiangmen Underground Neutrino Observatory(JUNO)is a large liquid scintillator detector designed to explore many topics in fundamental physics.In this study,the potential of searching for proton decay in the p→νK^(+)mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification.Moreover,the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals.Based on these advantages,the detection efficiency for the proton decay via p→νK^(+)is 36.9%±4.9%with a background level of 0.2±0.05(syst)±0.2(stat)events after 10 years of data collection.The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 years,which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies. 展开更多
关键词 proton decay grand unified theories JUNO liquid scintillator detector
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部