期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Frictional sliding of infilled planar granite fracture under oscillating normal stress
1
作者 Kang Tao Wengang Dang Yingchun Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第6期687-701,共15页
This paper investigates the frictional behavior of the infilled rock fracture under dynamic normal stress.A series of direct shear tests were conducted on saw-cut granite fractures infilled with quartz using a selfdev... This paper investigates the frictional behavior of the infilled rock fracture under dynamic normal stress.A series of direct shear tests were conducted on saw-cut granite fractures infilled with quartz using a selfdeveloped dynamic shear apparatus,and the effects of normal load oscillation amplitude,normal load oscillation period and sliding velocity were studied.The test results reveal that the shear response can be divided into three stages over a whole loading-unloading process,characterized by different time spans and stress variations.Generally,a smaller oscillation amplitude,a longer oscillation period and a fast shear velocity promote the stability of the friction system,which is also confirmed by the Coulomb failure criterion calculated based on the observed periodic apparent friction coefficient.The dynamic strengthening/weakening phenomenon is dependent on the oscillation amplitude and product of sliding velocity and oscillation period(vT).Also,the rate and state friction law incorporating the parameter a that characterizes the normal stress variation is employed to describe the dynamic friction coefficient but exhibits an incompetent performance when handling intensive variation in normal stress.Finally,the potential seismicity induced by oscillating normal stress based on the observed stress drop is analyzed.This work helps us understand the sliding process and stability evolution of natural faults,and its benefits for relative hazard mitigation. 展开更多
关键词 granite fracture Quartz gouge Normal load oscillation Frictional stability Rate and state friction law
下载PDF
The Three-Stage Model Based on Strain Strength Distribution for the Tensile Failure Process of Rock and Concrete Materials
2
作者 Rukun Guo Shihai Li Dong Zhou 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2016年第5期514-526,共13页
A three-stage model is introduced to describe the tensile failure process of rock and concrete materials.Failure of the material is defined to contain three stages in the model,which include elastic deformation stage,... A three-stage model is introduced to describe the tensile failure process of rock and concrete materials.Failure of the material is defined to contain three stages in the model,which include elastic deformation stage,body damage stage and localization damage stage.The failure mode change from uniform body damage to localization damage is expressed.The heterogeneity of material is described with strain strength distribution.The fracture factor and intact factor,defined as the distribution function of strain strength,are used to express the fracture state in the failure process.And the distributive parameters can be determined through the experimental stress-strain curve. 展开更多
关键词 fractured heterogeneity rock tensile Strain localization intact granite softening macroscopic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部