It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely ...It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries.展开更多
Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and ...Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.展开更多
Total 138 coal samples and 14 parting samples were taken from the No. 6 Seam of the Jungar Coalfield, Inner Mongolia. These samples were analysed by optical microscopy, sequential chemical extraction procedure (SCEP...Total 138 coal samples and 14 parting samples were taken from the No. 6 Seam of the Jungar Coalfield, Inner Mongolia. These samples were analysed by optical microscopy, sequential chemical extraction procedure (SCEP), inductively coupled plasma mass spectrometry (ICP-MS), X-ray powder diffraction (XRD), and scanning electron microscope in conjunction with an energy-dispersive X-ray spectrometer (SEM-EDX) analysis. The results indicate that the Li contents have reached the industrial grade of the coal associated Li deposit, and the total Li reserves have reached 2406600 tons, that is, 5157000 tons Li2O in the No. 6 seam in the Jungar Coalfield. The sequential chemical extraction procedure results suggest that the Li concentration is mainly related to inorganic matter. The minerals in the coals consist of kaolinite, boehmite, chlorite-group mineral, quartz, calcite, pyrite, siderite and amorphous clay material. Some Li could be absorbed by clay minerals in the Li-bearing coal seam. The chlorite phase?could be?most likely the host for a part of Li. The Yinshan Oldland should be the most possible source of Li of the coal.展开更多
Lithium(Li)penetration through solid electrolytes(SEs)induces short circuits in Li solid-state batteries(SSBs),which is a critical issue that hinders the development of high energy density SSBs.While cracking in ceram...Lithium(Li)penetration through solid electrolytes(SEs)induces short circuits in Li solid-state batteries(SSBs),which is a critical issue that hinders the development of high energy density SSBs.While cracking in ceramic SEs has been often shown to accompany Li penetration,the interplay between Li deposition and cracking remains elusive.Here,we constructed a mesoscale SSB inside a focused ion beam-scanning electron microscope(FIB-SEM)for in situ observation of Li deposition-induced cracking in SEs at nanometer resolution.Our results revealed that Li propagated predominantly along transgranular cracks in a garnet Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO).Cracks appeared to initiate from the interior of LLZTO beneath the electrode surface and then propagated by curving toward the LLZTO surface.The resulting bowl-shaped cracks resemble those from hydraulic fracture caused by high fluid pressure on the surface of internal cracks,suggesting that the Li deposition-induced pressure is the major driving force of crack initiation and propagation.The high pressure generated by Li deposition is further supported by in situ observation of the flow of filled Li between the crack flanks,causing crack widening and propagation.This work unveils the dynamic interplay between Li deposition and cracking in SEs and provides insight into the mitigation of Li dendrite penetration in SSBs.展开更多
The uncontrolled formation of lithium(Li)dendrites and the unnecessary consumption of electrolyte during the Li plating/stripping process have been major obstacles in developing safe and stable Li metal batteries.Here...The uncontrolled formation of lithium(Li)dendrites and the unnecessary consumption of electrolyte during the Li plating/stripping process have been major obstacles in developing safe and stable Li metal batteries.Herein,we report a cucumber-like lithiophilic composite skeleton(CLCS)fabricated through a facile oxidationimmersion-reduction method.The stepwise Li deposition and stripping,determined using in situ Raman spectra during the galvanostatic Li charging/discharging process,promote the formation of a dendrite-free Li metal anode.Furthermore,numerous pyridinic N,pyrrolic N,and CuxN sites with excellent lithiophilicity work synergistically to distribute Li ions and suppress the formation of Li dendrites.Owing to these advantages,cells based on CLCS exhibit a high Coulombic efficiency of 97.3%for 700 cycles and an improved lifespan of 2000 h for symmetric cells.The full cells assembled with LiFePO_(4)(LFP),SeS_(2) cathodes and CLCS@Li anodes demonstrate high capacities of 110.1 mAh g^(−1) after 600 cycles at 0.2 A g^(−1) in CLCS@Li|LFP and 491.8 mAh g^(−1) after 500 cycles at 1 A g^(−1) in CLCS@Li|SeS2.The unique design of CLCS may accelerate the application of Li metal anodes in commercial Li metal batteries.展开更多
Sn-Ni alloy films for Li-ion batteries were fabricated by electrochemical deposition with rough copper foils as current collectors.The influence of electrochemical-deposition temperature and heat treatment were also i...Sn-Ni alloy films for Li-ion batteries were fabricated by electrochemical deposition with rough copper foils as current collectors.The influence of electrochemical-deposition temperature and heat treatment were also investigated.By galvanostatic cell cycling the film anodes can deliver a steady specific capacity.The morphological changes cause the differences in capacity retention. After farther heat treatment,the film anodes present a better cycle performance,with a specific capacity of 314 mA·h/g after 100 cycles.This high capacity retention can be due to its smooth,compact surface formed in the heat treatment process.展开更多
The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein...The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.展开更多
Lithium metal is the ultimate anode material for next-generation high-energy batteries.Yet,the practical application of lithium metal anodes is limited by the formation of Li dendrites and large volume changes.Herein,...Lithium metal is the ultimate anode material for next-generation high-energy batteries.Yet,the practical application of lithium metal anodes is limited by the formation of Li dendrites and large volume changes.Herein,an effective multi-dimensional hybrid flexible film(MD-HFF)composed of iodine ion(0 dimension),CNTs(1 dimension)and graphene(2 dimensions)is designed for regulating Li deposition and mitigating volume changes.The multi-dimensional components serve separate roles:(1)iodine ion enhances the conductivity of the electrode and provides lithiophilic sites,(2)CNTs strengthen interlaminar conductance and mechanical strength,acting as a spring in the layered structure to alleviate volume changes during Li plating and stripping and(3)graphene provides mechanical flexibility and electrical conductivity.The resulting MD-HFF material supports stable Li plating/stripping and high Coulombic efficiency(99%)over 230 cycles at 1 mA cm^(-2) with a deposition capacity of 1 mAh cm^(-2).Theoretical calculations indicate that LiI contributes to the lateral growth of Li on the MD-HFF surface,thereby inhibiting the formation of Li dendrites.When paired with a typical NCM811 cathode,the assembled MD-HFF‖NCM811 cell exhibit improved capability and stable cycling performance.This research serves to guide material design in achieving Li anode materials that do not suffer from dendrite formation and volume changes.展开更多
The microstructure and tensile properties of Al-2. 15Li-1 .28Mg-1 .26Cu-0. 10 Zr alloy processed by a spray deposition processing have been investigated, and experimental results show that the as-deposited Al-Li alloy...The microstructure and tensile properties of Al-2. 15Li-1 .28Mg-1 .26Cu-0. 10 Zr alloy processed by a spray deposition processing have been investigated, and experimental results show that the as-deposited Al-Li alloy has a very fine equiaxed grain structure with a relative density of 94±3% on average. Grains in the as-extruded alloy are "brick-like" in morphology, and little oxide particles have been found at the grain boundaries. δ’ particles with irregular shape and, "δ’-β’" co-precipitates precipitate in the aged alloy. S’ phase also precipitate homogeneously at the dislocations. The spray deposited Al-Li alloy has the best properties (σb = 508MPa, σ0.2 = 420MPa, δ=12%) at the peak aged condition. Compared with RS/PM Al-Li alloy, ductility of the tested alloy has been enhanced obviously while a comparable tensile strength is maintained.展开更多
Al-3.8Li-0.8Mg-0.4Cu-0.13Zr alloy was prepared by a novel spray deposition technique,and its microstructure and tensile properties after various aging treatments have been investigated. The experimental results show t...Al-3.8Li-0.8Mg-0.4Cu-0.13Zr alloy was prepared by a novel spray deposition technique,and its microstructure and tensile properties after various aging treatments have been investigated. The experimental results show that the alloy,under study has very fine equiaxed grains about 5-20μm in diameter and a relative density of(94±3)% on average.Grains in the as-extruded alloy are'brick-like'in morphology,and few oxide particles have been found al the grain boundaries.δ' particles with irregular shape and'δ'-β''coprecipitates appear in the aged alloy.The coarsening of δ'particles is fast,and the distance between the particles does not widen so obviously as that of IM(ingot-casting method) alloys with increasing aging time.The spray deposited Al-Li alloy.reaches the peak-aged condition in a short time(10 h al 190℃) when the best properties(σb=534 MPa, σ0.2=480 MPa.δ=10%) are obtained.Compared with RSPM(rapid solidification processing method)Al-Li alloy,the ductility of the tested alloy has been obviously.enhanced while a comparable tensile strength is maintained.展开更多
Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithiu...Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed.Herein,by combining PVDF-HFP and ferroelectric BaTiO_(3),we develop a homogeneous,single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength.As squeezed by local protrusion,the polarized PVDF-HFP/BaTiO_(3)composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion,hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator,especially at high rates.Remarkably,the homogeneous incorporation of BaTiO_(3)highly improves the piezoelectric performances of the separator with residual polarization of 0.086 pC cm^(-2)after polarization treatment,four times that of the pure PVDF-HFP separator,and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57.Beneficial from the prominent piezoelectric mechanism,the polarized PVDF-HFP/BaTiO_(3)composite separator enables stable cyclic performances of Li||LiFePO_(4)cells for 400 cycles at 2 C(1 C=170 mA g^(-1))with a capacity retention above 99%,and for 600 cycles at 5 C with a capacity retention over 85%.展开更多
Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition be...Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition behavior still occurs at the top of 3D frameworks owing to the local accumulation of Li ions.To promote uniform Li deposition without top dendrite growth,herein,a layered multifunctional framework based on oxidation-treated polyacrylonitrile(OPAN) and metal-organic framework(MOF) derivatives was proposed for rationally regulating the distribution of Li ions flux,nucleation sites,and electrical conductivity.Profiting from these merits,the OPAN/carbon nano fiber-MOF(CMOF) composite framework demonstrated a reversible Li plating/stripping behavior for 500 cycles with a stable Coulombic efficiency of around 99.0% at the current density of 2 mA/cm~2.Besides,such a Li composite anode exhibited a superior cycle lifespan of over 1300 h under a low polarized voltage of 18 mV in symmetrical cells.When the Li composite anode was paired with LiFePO_(4)(LFP) cathode,the obtained full cell exhibited a stable cycling over 500 cycles.Moreover,the COMSOL Multiphysics simulation was conducted to reveal the effects on homogeneous Li ions distribution derived from the above-mentioned OPAN/CMOF framework and electrical insulation/conduction design.These electrochemical and simulated results shed light on the difficulties of designing stable and safe Li metal anode via optimizing the 3D frameworks.展开更多
基金supported by the National Key Research and Development Program of China(2019YFA0205700)Scientific Research Projects of Colleges and Universities in Hebei Province(JZX2023004)+2 种基金Research Program of Local Science and Technology Development under the Guidance of Central(216Z4402G)support from Ministry of Science and Higher Education of Russian Federation(project FFSG-2022-0001(122111700046-3),"Laboratory of perspective electrode materials for chemical power sources")support from"Yuanguang"Scholar Program of Hebei University of Technology
文摘It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries.
基金This work is supported by National Natural Science Founda-tion of China(U2004199)National Key Research and Devel-opment Program of China(2018YFD0200606)+1 种基金China Postdoctoral Science Foundation(2021T140615),Natural Sci-enceFoundationofHenanProvince(212300410285)Young Talent Support Project of Henan Province(2021HYTP028).
文摘Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.
基金financially supported by the National Science Fundamental of China Projects(Nos.41072115 and 51174262)the project of the Science Foundation of Hebei(No.D2011402034)
文摘Total 138 coal samples and 14 parting samples were taken from the No. 6 Seam of the Jungar Coalfield, Inner Mongolia. These samples were analysed by optical microscopy, sequential chemical extraction procedure (SCEP), inductively coupled plasma mass spectrometry (ICP-MS), X-ray powder diffraction (XRD), and scanning electron microscope in conjunction with an energy-dispersive X-ray spectrometer (SEM-EDX) analysis. The results indicate that the Li contents have reached the industrial grade of the coal associated Li deposit, and the total Li reserves have reached 2406600 tons, that is, 5157000 tons Li2O in the No. 6 seam in the Jungar Coalfield. The sequential chemical extraction procedure results suggest that the Li concentration is mainly related to inorganic matter. The minerals in the coals consist of kaolinite, boehmite, chlorite-group mineral, quartz, calcite, pyrite, siderite and amorphous clay material. Some Li could be absorbed by clay minerals in the Li-bearing coal seam. The chlorite phase?could be?most likely the host for a part of Li. The Yinshan Oldland should be the most possible source of Li of the coal.
基金supported by the National Natural Science Foundation of China(Nos.52022088,51971245,51772262,21406191,U20A20336,21935009,51771222,52002197)Beijing Natural Science Foundation(2202046)+3 种基金Fok Ying-Tong Education Foundation of China(No.171064)Natural Science Foundation of Hebei Province(No.F2021203097,B2020203037,B2018203297)Hunan Innovation Team(2018RS3091)supported by the Assistant Secretary for Energy,Vehicles Technology Office,of the U.S.Department of Energy under Contract(No.DEAC02-05CH11231).
文摘Lithium(Li)penetration through solid electrolytes(SEs)induces short circuits in Li solid-state batteries(SSBs),which is a critical issue that hinders the development of high energy density SSBs.While cracking in ceramic SEs has been often shown to accompany Li penetration,the interplay between Li deposition and cracking remains elusive.Here,we constructed a mesoscale SSB inside a focused ion beam-scanning electron microscope(FIB-SEM)for in situ observation of Li deposition-induced cracking in SEs at nanometer resolution.Our results revealed that Li propagated predominantly along transgranular cracks in a garnet Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO).Cracks appeared to initiate from the interior of LLZTO beneath the electrode surface and then propagated by curving toward the LLZTO surface.The resulting bowl-shaped cracks resemble those from hydraulic fracture caused by high fluid pressure on the surface of internal cracks,suggesting that the Li deposition-induced pressure is the major driving force of crack initiation and propagation.The high pressure generated by Li deposition is further supported by in situ observation of the flow of filled Li between the crack flanks,causing crack widening and propagation.This work unveils the dynamic interplay between Li deposition and cracking in SEs and provides insight into the mitigation of Li dendrite penetration in SSBs.
基金This work is well supported by National Natural Science Foundation of China(52073170,21975154)Shanghai Municipal Education Commission(Innovation Program(2019-01-07-00-09-E00021)Innovative Research Team of High-level Local Universities in Shanghai.The authors also acknowledge Lab for Microstructure,Instrumental Analysis&Research Center,Shanghai University,for their help on materials characterization.Moreover,the authors thank High Performance Computing Center of Shanghai University,and Shanghai Engineering Research Center of Intelligent Computing System(No.19DZ2252600)for the assistance of computing resources and technical support.
文摘The uncontrolled formation of lithium(Li)dendrites and the unnecessary consumption of electrolyte during the Li plating/stripping process have been major obstacles in developing safe and stable Li metal batteries.Herein,we report a cucumber-like lithiophilic composite skeleton(CLCS)fabricated through a facile oxidationimmersion-reduction method.The stepwise Li deposition and stripping,determined using in situ Raman spectra during the galvanostatic Li charging/discharging process,promote the formation of a dendrite-free Li metal anode.Furthermore,numerous pyridinic N,pyrrolic N,and CuxN sites with excellent lithiophilicity work synergistically to distribute Li ions and suppress the formation of Li dendrites.Owing to these advantages,cells based on CLCS exhibit a high Coulombic efficiency of 97.3%for 700 cycles and an improved lifespan of 2000 h for symmetric cells.The full cells assembled with LiFePO_(4)(LFP),SeS_(2) cathodes and CLCS@Li anodes demonstrate high capacities of 110.1 mAh g^(−1) after 600 cycles at 0.2 A g^(−1) in CLCS@Li|LFP and 491.8 mAh g^(−1) after 500 cycles at 1 A g^(−1) in CLCS@Li|SeS2.The unique design of CLCS may accelerate the application of Li metal anodes in commercial Li metal batteries.
基金Project(20070410219)supported by China Postdoctoral Science FoundationProject(20703013)supported by the National Natural Science Foundation of China
文摘Sn-Ni alloy films for Li-ion batteries were fabricated by electrochemical deposition with rough copper foils as current collectors.The influence of electrochemical-deposition temperature and heat treatment were also investigated.By galvanostatic cell cycling the film anodes can deliver a steady specific capacity.The morphological changes cause the differences in capacity retention. After farther heat treatment,the film anodes present a better cycle performance,with a specific capacity of 314 mA·h/g after 100 cycles.This high capacity retention can be due to its smooth,compact surface formed in the heat treatment process.
基金the financial support from the National Natural Science Foundation of China(Nos.22205191 and 52002346)the Science and Technology Innovation Program of Hunan Province(No.2021RC3109)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2022JJ40446)Guangxi Key Laboratory of Low Carbon Energy Material(No.2020GXKLLCEM01)。
文摘The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.
基金supported by the Sichuan Province Science and Technology Support Program of 2020YFG0339, 2020YFH0097 and 2018GZ0007。
文摘Lithium metal is the ultimate anode material for next-generation high-energy batteries.Yet,the practical application of lithium metal anodes is limited by the formation of Li dendrites and large volume changes.Herein,an effective multi-dimensional hybrid flexible film(MD-HFF)composed of iodine ion(0 dimension),CNTs(1 dimension)and graphene(2 dimensions)is designed for regulating Li deposition and mitigating volume changes.The multi-dimensional components serve separate roles:(1)iodine ion enhances the conductivity of the electrode and provides lithiophilic sites,(2)CNTs strengthen interlaminar conductance and mechanical strength,acting as a spring in the layered structure to alleviate volume changes during Li plating and stripping and(3)graphene provides mechanical flexibility and electrical conductivity.The resulting MD-HFF material supports stable Li plating/stripping and high Coulombic efficiency(99%)over 230 cycles at 1 mA cm^(-2) with a deposition capacity of 1 mAh cm^(-2).Theoretical calculations indicate that LiI contributes to the lateral growth of Li on the MD-HFF surface,thereby inhibiting the formation of Li dendrites.When paired with a typical NCM811 cathode,the assembled MD-HFF‖NCM811 cell exhibit improved capability and stable cycling performance.This research serves to guide material design in achieving Li anode materials that do not suffer from dendrite formation and volume changes.
文摘The microstructure and tensile properties of Al-2. 15Li-1 .28Mg-1 .26Cu-0. 10 Zr alloy processed by a spray deposition processing have been investigated, and experimental results show that the as-deposited Al-Li alloy has a very fine equiaxed grain structure with a relative density of 94±3% on average. Grains in the as-extruded alloy are "brick-like" in morphology, and little oxide particles have been found at the grain boundaries. δ’ particles with irregular shape and, "δ’-β’" co-precipitates precipitate in the aged alloy. S’ phase also precipitate homogeneously at the dislocations. The spray deposited Al-Li alloy has the best properties (σb = 508MPa, σ0.2 = 420MPa, δ=12%) at the peak aged condition. Compared with RS/PM Al-Li alloy, ductility of the tested alloy has been enhanced obviously while a comparable tensile strength is maintained.
文摘Al-3.8Li-0.8Mg-0.4Cu-0.13Zr alloy was prepared by a novel spray deposition technique,and its microstructure and tensile properties after various aging treatments have been investigated. The experimental results show that the alloy,under study has very fine equiaxed grains about 5-20μm in diameter and a relative density of(94±3)% on average.Grains in the as-extruded alloy are'brick-like'in morphology,and few oxide particles have been found al the grain boundaries.δ' particles with irregular shape and'δ'-β''coprecipitates appear in the aged alloy.The coarsening of δ'particles is fast,and the distance between the particles does not widen so obviously as that of IM(ingot-casting method) alloys with increasing aging time.The spray deposited Al-Li alloy.reaches the peak-aged condition in a short time(10 h al 190℃) when the best properties(σb=534 MPa, σ0.2=480 MPa.δ=10%) are obtained.Compared with RSPM(rapid solidification processing method)Al-Li alloy,the ductility of the tested alloy has been obviously.enhanced while a comparable tensile strength is maintained.
基金supported by the Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites in Special Environmentsthe National Natural Science Foundation of China(12002109)
文摘Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed.Herein,by combining PVDF-HFP and ferroelectric BaTiO_(3),we develop a homogeneous,single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength.As squeezed by local protrusion,the polarized PVDF-HFP/BaTiO_(3)composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion,hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator,especially at high rates.Remarkably,the homogeneous incorporation of BaTiO_(3)highly improves the piezoelectric performances of the separator with residual polarization of 0.086 pC cm^(-2)after polarization treatment,four times that of the pure PVDF-HFP separator,and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57.Beneficial from the prominent piezoelectric mechanism,the polarized PVDF-HFP/BaTiO_(3)composite separator enables stable cyclic performances of Li||LiFePO_(4)cells for 400 cycles at 2 C(1 C=170 mA g^(-1))with a capacity retention above 99%,and for 600 cycles at 5 C with a capacity retention over 85%.
基金supported by the National Natural Science Foundation of China (52302292, 52302058, 52302085)the China Postdoctoral Science Foundation (2021M702225)+1 种基金the Anhui Province University Natural Science Research Project (2023AH030093, 2023AH040301)the Startup Research Fund of Chaohu University (KYQD-2023005, KYQD-2023051)。
文摘Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition behavior still occurs at the top of 3D frameworks owing to the local accumulation of Li ions.To promote uniform Li deposition without top dendrite growth,herein,a layered multifunctional framework based on oxidation-treated polyacrylonitrile(OPAN) and metal-organic framework(MOF) derivatives was proposed for rationally regulating the distribution of Li ions flux,nucleation sites,and electrical conductivity.Profiting from these merits,the OPAN/carbon nano fiber-MOF(CMOF) composite framework demonstrated a reversible Li plating/stripping behavior for 500 cycles with a stable Coulombic efficiency of around 99.0% at the current density of 2 mA/cm~2.Besides,such a Li composite anode exhibited a superior cycle lifespan of over 1300 h under a low polarized voltage of 18 mV in symmetrical cells.When the Li composite anode was paired with LiFePO_(4)(LFP) cathode,the obtained full cell exhibited a stable cycling over 500 cycles.Moreover,the COMSOL Multiphysics simulation was conducted to reveal the effects on homogeneous Li ions distribution derived from the above-mentioned OPAN/CMOF framework and electrical insulation/conduction design.These electrochemical and simulated results shed light on the difficulties of designing stable and safe Li metal anode via optimizing the 3D frameworks.