期刊文献+
共找到12,062篇文章
< 1 2 250 >
每页显示 20 50 100
Research on the Application of Electromagnetic Method in the Exploration of Altered Rock-type Gold Deposits in the East Kunlun Metallogenic Belt
1
作者 DONG Ji’en ZHANG Huiqing +4 位作者 WANG Peng LI Hua YE Gaofeng YU Xiaoliang LI Jie 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期18-21,共4页
Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,20... Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023). 展开更多
关键词 electromagnetic method altered rock-type gold deposits Mailong mining area East Kunlun metallogenic belt
下载PDF
The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings 被引量:13
2
作者 David I.Groves Richard J.Goldfarb M.Santosh 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第3期303-314,共12页
It is quite evident that it is not anomalous metal transport,nor unique depositional conditions,nor any single factor at the deposit scale,that dictates whether a mineral deposit becomes a giant or not.A hierarchical ... It is quite evident that it is not anomalous metal transport,nor unique depositional conditions,nor any single factor at the deposit scale,that dictates whether a mineral deposit becomes a giant or not.A hierarchical approach thus is required to progressively examine controlling parameters at successively decreasing scales in the total mineral system to understand the location of giant gold deposits in non-arc environments.For giant orogenic,intrusion-related gold systems(IRGS) and Carlin-type gold deposits and iron oxide-copper-gold(IOCG) deposits,there are common factors among all of these at the lithospheric to crustal scale.All are sited in giant gold provinces controlled by complex fundamental fault or shear zones that follow craton margins or,in the case of most Phanerozoic orogenic giants,define the primary suture zones between tectonic terranes.Giant provinces of IRGS,IOCG,and Carlin-type deposits require melting of metasomatized lithosphere beneath craton margins with ascent of hybrid lamprophyric to granitic magmas and associated heat flux to generate the giant province.The IRGS and IOCG deposits require direct exsolution of volatile-rich magmatic-hydrothermal fluids,whereas the association of such melts with Carlin-type ores is more indirect and enigmatic.Giant orogenic gold provinces show no direct relationship to such magmatism.forming from metamorphic fluids,but show an indirect relationship to lamprophyres that reflect the mantle connectivity of controlling first-order structures.In contrast to their province scale similarities,the different giant gold deposit styles show contrasting critical controls at the district to deposit scale.For orogenic gold deposits,the giants appear to have formed by conjunction of a greater number of parameters to those that control smaller deposits,with resultant geometrical and lithostratigraphic complexity as a guide to their location.There are few giant IRGS due to their inferior fluid-flux systems relative to orogenic gold deposits,and those few giants are essentially preservational exceptions.Many Carlin-type deposits are giants due to the exceptional conjunction of both structural and lithological parameters that caused reactive and permeable rocks,enriched in syngenetic gold,to be located below an impermeable cap along antiformal "trends".Hydrocarbons probably played an important role in concentrating metal.The supergiant Post-Betze deposit has additional ore zones in strain heterogeneities surrounding the pre-gold Goldstrike stock.All unequivocal IOCG deposits are giant or near-giant deposits in terms of gold-equivalent resources,partly due to economic factors for this relatively poorly understood,low Cu-Au grade deposit type.The supergiant Olympic Dam deposit,the most shallowly formed deposit among the larger IOCGs,probably owes its origin to eruption of volatile-rich hybrid magma at surface,with formation of a large maar and intense and widespread brecciation,alteration and Cu-Au-U deposition in a huge rock volume. 展开更多
关键词 Giant gold deposits Orogenic gold Carlin deposits Iron oxide-copper-gold deposits Intrusion-related gold systems LITHOSPHERE
下载PDF
M agmatic Gold Mineralization in the Western Qinling Orogenic Belt: Geology and Metallogenesis of the Baguamiao,Liba and Xiaogouli Gold Deposits 被引量:12
3
作者 FENGJianzhong WANGDongbo +2 位作者 WANGXueming ZENGYishan LITiefeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期529-533,共5页
The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-... The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-Pb dating of single zircon from granite, tracing of H and O isotopes and studies on the mineralogy and texture of spots and bleached alteration developed in wall rocks, this paper focuses the relations between gold deposits and granite to clarify the origin of gold deposits and the metallogenesis in the tectonic evolution of the Qinling Orogenic Belt. The comprehensive studies show that the age of the granite (148.1-244 Ma) is identical with that of the gold deposits (131.91-232.56 Ma). It is suggested that the granite has close temporal, spatial and genetic relationship with the gold deposits. The granite provides a heat source, water source and considerable amount of ore-forming material. Finally, it is concluded that the orogeny by collision, emplacement of the granite and positioning of the gold deposits represent a successive process. Both the granite and gold deposits resulted from the syn-orogeny and post-orogeny tectonic evolution. 展开更多
关键词 Western Qinling Orogenic Belt Baguamiao gold deposit Liba gold deposit Xiaogouli gold deposit GRANITE
下载PDF
Laumontitization as an Exploration Indicator of Epithermal Gold Deposits: A Case Study of the Axi and Other Epithermal Systems in West Tianshan, China 被引量:8
4
作者 陈衍 鲍景新 +2 位作者 张增杰 陈华勇 刘玉琳 《Chinese Journal Of Geochemistry》 EI CAS 2003年第4期289-301,共13页
In the light of field investigation, microscopic study, X\|ray phase analysis and mineral infrared spectral analysis, it is considered that laumontitization is of extensive occurrence in the Axi gold orefield. The dev... In the light of field investigation, microscopic study, X\|ray phase analysis and mineral infrared spectral analysis, it is considered that laumontitization is of extensive occurrence in the Axi gold orefield. The development of laumontitization and its relationship to mineralization show that the laumontitization appeared mainly at the top of and in the periphery of orebodies, and occurred at the edge of the epithermal system or at the late stage of epithermal system evolution. Therefore, laumontitization can be used as an exploration indicator of epithermal gold deposits. The fluids responsible for laumontitization in the Axi gold orefield are similar to those producing hot spring\|type gold deposits or those from modern geothermal fields. Epithermal mineralization of the Axi gold deposit was dated at Carboniferous, indicating that the West Tianshan of China is a region favorable to epithermal\|type gold mineralization and preservation. Hence the West Tianshan of China is a target area for exploring epithermal gold deposits. 展开更多
关键词 AXI gold deposit laumonfitizafion EPITHERMAL gold deposit geothermal metaliogenic system WEST TIANSHAN
下载PDF
Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits 被引量:27
5
作者 David I.Groves M.Santosh +1 位作者 Richard J.Goldfarb Liang Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第4期1163-1177,共15页
With very few exceptions, orogenic gold deposits formed in subduction-related tectonic settings in accretionary to collisional orogenic belts from Archean to Tertiary times. Their genesis, including metal and fluid so... With very few exceptions, orogenic gold deposits formed in subduction-related tectonic settings in accretionary to collisional orogenic belts from Archean to Tertiary times. Their genesis, including metal and fluid source, fluid pathways, depositional mechanisms, and timing relative to regional structural and metamorphic events, continues to be controversial. However, there is now general agreement that these deposits formed from metamorphic fluids, either from metamorphism of intra-basinal rock sequences or de-volatilization of a subducted sediment wedge, during a change from a compressional to transpressional, less commonly transtensional, stress regime, prior to orogenic collapse. In the case of Archean and Paleoproterozoic deposits, the formation of orogenic gold deposits was one of the last events prior to cratonization. The late timing of orogenic gold deposits within the structural evolution of the host orogen implies that any earlier structures may be mineralized and that the current structural geometry of the gold deposits is equivalent to that at the time of their formation provided that there has been no significant post-gold orogenic overprint. Within the host volcano-sedimentary sequences at the province scale, world-class orogenic gold deposits are most commonly located in second-order structures adjacent to crustal scale faults and shear zones, representing the first-order ore-forming fluid pathways, and whose deep lithospheric connection is marked by lamprophyre intrusions which, however, have no direct genetic association with gold deposition. More specifically, the gold deposits are located adjacent to ~10°-25° district-scale jogs in these crustal-scale faults. These jogs are commonly the site of arrays of ~70° cross faults that accommodate the bending of the more rigid components, for example volcanic rocks and intrusive sills, of the host belts. Rotation of blocks between these accommodation faults causes failure of more competent units and/or reactivation and dilation of pre-existing structures, leading to deposit-scale focussing of ore-fluid and gold deposition.Anticlinal or antiformal fold hinges, particularly those of 'locked-up' folds with ~30° apical angles and overturned back limbs, represent sites of brittle-ductile rock failure and provide one of the more robust parameters for location of orogenic gold deposits.In orogenic belts with abundant pre-gold granitic intrusions, particularly Precambrian granitegreenstone terranes, the boundaries between the rigid granitic bodies and more ductile greenstone sequences are commonly sites of heterogeneous stress and inhomogeneous strain. Thus, contacts between granitic intrusions and volcano-sedimentary sequences are common sites of ore-fluid infiltration and gold deposition. For orogenic gold deposits at deeper crustal levels, ore-forming fluids are commonly focused along strain gradients between more compressional zones where volcano-sedimentary sequences are thinned and relatively more extensional zones where they are thickened. World-class orogenic gold deposits are commonly located in the deformed volcano-sedimentary sequences in such strain gradients adjacent to triple-point junctions defined by the granitic intrusions, or along the zones of assembly of micro-blocks on a regional scale. These repetitive province to district-scale geometrical patterns of structures within the orogenic belts are clearly critical parameters in geology-based exploration targeting for orogenic gold deposits. 展开更多
关键词 Structural geometry Tectonic history Fluid pathways Orogenic gold deposits Exploration criteria
下载PDF
Geochemistry of hydrothermal gold deposits:A review 被引量:13
6
作者 Yongfeng Zhu Fang An Juanjuan Tan 《Geoscience Frontiers》 SCIE CAS 2011年第3期367-374,共8页
Mineral assemblages formed during hydrothermal alteration reflect the geochemical composition of ore-forming fluids. Gold is mainly transported in solution as Au-CI and Au-S complexes. The change of physicochemical co... Mineral assemblages formed during hydrothermal alteration reflect the geochemical composition of ore-forming fluids. Gold is mainly transported in solution as Au-CI and Au-S complexes. The change of physicochemical conditions such as temperature, pressure, oxygen fugacity, and sulfur fugacity are effective mechanisms for gold precipitation. Gold tends to be concentrated in the vapor phase of fluids at high temperatures and pressures. Au-As and Au-Sb associations are common in gold deposit. Native antimony and/or arsenic -- native gold assemblages may precipitate from hydrothermal fluids with low sulfur fugacity. Hydrothermal fluids forming epithermal gold deposits are Au-saturated in most cases, whereas fluids of Carlin-type are Au-undersaturated. Quasi-steady As-bearing pyrite extracts solid solution Au from hydrothermal fluids through absorption. The capability of As-bearing pyrite to absorb An from under-saturated fluid is the key to the formation of large-scale Carlin-type deposits. With increasing new data, studies on the geochemistry of gold deposits can be used to trace the origin of ore-forming fluids, the source of gold, and the transporting form of Au and other ore-forming elements, such as Si, S, F, Cl, As and Ag. 展开更多
关键词 GEOCHEMISTRY Hydrothermal fluid ALTERATION gold deposits
下载PDF
Red Clay Type Gold Deposits in China 被引量:6
7
作者 SUN Xiang DENG Jun +3 位作者 WANG Qingfei GONG Qingjie YANG Liqiang WANG Changming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第6期1415-1427,共13页
Red clay type gold deposits,located in the south of China,are situated not only in orogenic belts,but also in inner cratons,where climate is tropical-subtropical with clear arid and humid.The lateritic weathering crus... Red clay type gold deposits,located in the south of China,are situated not only in orogenic belts,but also in inner cratons,where climate is tropical-subtropical with clear arid and humid.The lateritic weathering crust often can be divided into five zones,including topsoil,siliceous duricrust zone,multi-color zone(or red clay zone in some deposits),pallid zone and saprolite zone from surface to the base rock,several of which are absent in some deposits.The base rocks are composed mainly of carbonate rocks with minor clastic rocks,intermediate-basic volcanic rocks and intermediate-acid and alkalic intrusions.The orebodies are mainly located in the multi-color zone with part of them in the pallid and saprolite zones.The ore sources include orebodies of Carlin-type gold deposits and porphyry gold deposits,as well as gold-rich base rocks.The red clay type gold deposits experienced early-stage endogenic gold mineralization and laterization during the Tertiary and Quaternary.The areas with endogenic gold deposits,especially Carlin-type gold deposits and porphyry gold deposits in karst depressions on the plateau,structual erosional platforms in the middle-lower mountains,and intermountain basins in southern China are well worth studying to trace red clay type gold deposits. 展开更多
关键词 red clay type gold deposit lateritic weathering crust Carlin-type gold deposit endogenic gold mineralization China
下载PDF
The Isotopic Composition of Noble Gases in Gold Deposits and the Source of Ore-Forming Materials in the Region of North Hebei, China 被引量:9
8
作者 王宝德 牛树银 +1 位作者 孙爱群 李红阳 《Chinese Journal Of Geochemistry》 EI CAS 2003年第4期313-319,共7页
The source of ore\|forming materials has long been a controversial focus both in metallogenic theory and in ore\|searching practice. This study deals with the helium and argon isotopic characteristics of pyrites from ... The source of ore\|forming materials has long been a controversial focus both in metallogenic theory and in ore\|searching practice. This study deals with the helium and argon isotopic characteristics of pyrites from 11 gold deposits and some country rocks in the gold mineralization\|concentrated areas within the three mantle\|branch structures in the region of North Hebei Province. It is indicated that \{\}\+3He/\+4He ratios in the gold deposits are within the range of \{0.93×10\+\{-6\}\}-\{7.3×10\+\{-6\}\}, with an average of \{3.55\} ×10\+\{-6\}; R/Ra=\{0.66\}-\{4.93\}, averaging \{2.53\}; \{\{\}\+\{40\}Ar/\+\{39\}Ar\} ratios vary between 426 and 2073, with the average value of \{\}\+\{40\}Ar being \{8.32\}; and the average of \{\}\+4He/\{\}\+\{40\}Ar ratios is 2.17. \{\}\+3He/ \{\}\+4He ratios in gneiss and granite in the periphery of the mining district are within the range of \{0.001×10\+\{-6\}\}-\{0.55×10\+\{-6\}\}, reflecting significant differences in their sources. \{\}\+3He and \{\}\+4He fall near the mantle, as is shown in the He concentration diagram. Studies have shown that the ore\|forming materials in this region should come from the deep interior of the Earth. With the multi\|stage evolution of mantle plume, ore\|forming fluids in the deep interior were moving upwards to shallow levels (crust). Under such circumstances, there would be inevitably occur crust/mantle fluid mixing, so their noble gas isotopic characteristics are intermediate between the mantle and the crust. 展开更多
关键词 gold deposit source of 0re-forminE nmterial He Ar ISOTOPIC composition mantle-branch structure MANTLE PLUME
下载PDF
Mineralization during Collisional Orogenesis and Its Control of the Distribution of Gold and Other Deposits in the Junggar Orogen, Xinjiang, China 被引量:9
9
作者 Chen Yanjing Department of Geology, Peking University, Beijing Liu Xinzhu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1997年第1期69-79,共11页
The Junggar orogen, Xinjiang, China, is an important part of the Ural-Mongolian orogen.The collisional orogenesis in this region occurred primarily in the Carboniferous and Permianwith an evolutional process of early ... The Junggar orogen, Xinjiang, China, is an important part of the Ural-Mongolian orogen.The collisional orogenesis in this region occurred primarily in the Carboniferous and Permianwith an evolutional process of early compression and late extension. Mineralization of gold andother metals in the Junggar orogen occurred mainly in the Permian and in a few cases in theLate Carboniferous. The deposits are largely distributed in areas where collisional orogenesiswas intensive and formed in a transitional stage from compression to extension. Therefore, goldmineralization in the Junggar orogen is fully consistent with the collisional orogenesis in time,space and geodynamic setting. This indicates that the mineral deposit model of collisionalorogenesis is applicable to prospecting and study of ore deposits in the Junggar orogen.Furthermore, the factual distribution of gold and other deposits in this region is just the same asthe collisional orogenic model presents. 展开更多
关键词 Junggar orogen collisional orogenesis intracontinental subduction MINERALIZATION distribution of gold deposits
下载PDF
Metallogenesis of Precambrian gold deposits in the Wutai greenstone belt:Constrains on the tectonic evolution of the North China Craton 被引量:6
10
作者 Ju-Quan Zhang Sheng-Rong Li +2 位作者 M.Santosh Jing Lu Chun-Liang Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第2期317-333,共17页
The Wutai greenstone belt in central North China Craton(NCC) hosts a number of Precambrian gold deposits and ore occurrences. Based on the host rock association, these can be divided into Banded Iron Formation(BIF), m... The Wutai greenstone belt in central North China Craton(NCC) hosts a number of Precambrian gold deposits and ore occurrences. Based on the host rock association, these can be divided into Banded Iron Formation(BIF), meta-volcano-sedimentary and meta-conglomerate types. The two former types formed during ~2.5-2.3 Ga and the third one at ~1.85 Ga. The characteristics of these Precambrian gold deposits are broadly similar with those of the orogenic gold deposits. Based on available geochronological data, here we reconstruct the major tectonic events and their relationship with gold mineralization in the Wutai-Hengshan-Fuping region during Neoarchean to Paleoproterozoic as follows.(1)~2.6-2.5 Ga: widespread intrusion of tonalite-trondhjemite-granodiorite(TTG) magmas in the Hengshan terrane and Fuping continental arc, formation of the Wutai volcanic arc in the southern margin of Hengshan terrane with granitoids emplacement, and the Hengshan-Wutai intra-oceanic arc accretion to the Fuping arc at the end of Neoarchean.(2) ~ 2.5-2.3 Ga: the subduction of Hengshan arc from north leading to persistent magmatism and orogenic gold mineralization.(3)~2.2-2.1 Ga:extension leading to the formation of graben structure in the Wutai and Fuping region, deposition of the Hutuo and Wanzi Group sediments, formation of placer gold through erosion of the orogenic gold deposits.(4)~2.2-2.0 Ga: widespread magmatism in the Wutai-Hengshan-Fuping region.(5)~1.95-1.8 Ga: regional metamorphism associated with collision of the Western and Eastern Blocks of the NCC and associated orogenic gold deposits. The multiple subduction-accretion-collision history and subsequent deep erosion has significantly affected most of the Precambrian gold deposits in the Wutai greenstone belt. 展开更多
关键词 Wutai GREENSTONE belt OROGENIC gold deposits Geochronology Tectonics North China CRATON
下载PDF
Organic Geochemistry of Sedimentary Rock-hosted Disseminated Gold Deposits in Southwestern Guizhou Province, China 被引量:7
11
作者 BAOZhiwei ZHAOZhenhua JayantaGUHA 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第1期120-133,共14页
Sedimentary rock-hosted disseminated gold (SRHDG) deposits in the Youjiang-Nanpanjiang Basin, southwestern Guizhou Province are commonly hosted by the same fold crests that commonly contain a remarkable amount of orga... Sedimentary rock-hosted disseminated gold (SRHDG) deposits in the Youjiang-Nanpanjiang Basin, southwestern Guizhou Province are commonly hosted by the same fold crests that commonly contain a remarkable amount of organic material. The total organic carbon (TOC) contents of the ores and host rocks are usually less than 1%. The reflectance of vitrinite and pyrobitumen in the ores and the host rocks ranges from 1.5% to 4.5%, often in the range of 2% to 3%. In the Lannigou deposit, the reflectance of vitrinite and pyrobitumen in the ores is usually somewhat higher than those within the host rocks, indicating a hydrothermal impact on the organic matter in the altered host rocks. On the contrary, the estimated maximum paleotemperatures of the Getang and Zimudang deposits are higher than the homogenization temperatures of the fluid inclusions in the ores, signifying that the organic matter maturation predated Au mineralization. No correlation between the organic matter contents and Au concentrations were recognized in the ores. However, the most striking observation is that there is a positive correlation between the S2 (a parameter of Rock-Eval analysis), Au and As contents of the ores in the Lannigou deposit. Organic matter maturation and migration is apparent from the TOC vs. HCI diagram. Furthermore, group analysis of the dichloromethane extractable organic component of the ores and host rocks shows that the maturation degree of the organic matter in the ores is slightly higher than that of the host rocks in the Lannigou gold deposit. However, the compositions of their alkanes, steranes and terpenes, which serve as biomarkers, are quite similar; this suggests that the organic matter found in the ores and host rocks has a common marine source. Organic matter probably contributed to the preconcentration of Au in the host rocks. Hydrocarbons in the system, on the other hand, clearly contributed to the emplacement of the gold mineralization through thermal sulfate reduction. Organic matter in the solution might have increased the potential of the hydrothermal solution to transport Au. 展开更多
关键词 organic matter sediment-hosted disseminated gold deposit geochemistry Guizhou Province
下载PDF
Genetic Types and Metallogenic Model for the Polymetallic Copper–Gold Deposits in the Tongling Ore District, Anhui Province, Eastern China 被引量:7
12
作者 FU Zhongyang XU Xiaochun +4 位作者 HE Jun FAN Ziliang XIE Qiaoqin DU Jianguo CHEN Fang 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2019年第1期88-110,共23页
The Tongling ore district is one of the most economically important ore areas in the Middle–Lower Yangtze River Metallogenic Belt, eastern China. It contains hundreds of polymetallic copper–gold deposits and occurre... The Tongling ore district is one of the most economically important ore areas in the Middle–Lower Yangtze River Metallogenic Belt, eastern China. It contains hundreds of polymetallic copper–gold deposits and occurrences. Those deposits are mainly clustered(from west to east) within the Tongguanshan, Shizishan, Xinqiao, Fenghuangshan, and Shatanjiao orefields. Until recently, the majority of these deposits were thought to be skarn-or porphyry–skarn-type deposits; however there have been recent discoveries of numerous vein-type Au, Ag, and Pb-Zn deposits that do not fall into either of these categories. This indicates that there is some uncertainty over this classification. Here, we present the results of several systematic geological studies of representative deposits in the Tongling ore district. From investigation of the ore-controlling structures, lithology of the host rock, mineral assemblages, and the characteristics of the mineralization and alteration within these deposits, three genetic types of deposits(skarn-, porphyry-, and vein-type deposits) have been identified. The spatial and temporal relationships between the orebodies and Yanshanian intrusions combined with the sources of the ore-forming fluids and metals, as well as the geodynamic setting of this ore district, indicate that all three deposit types are genetically related each other and constitute a magmatic–hydrothermal system. This study outlines a model that relates the polymetallic copper–gold porphyry-, skarn-, and vein-type deposits within the Tongling ore district. This model provides a theoretical basis to guide exploration for deep-seated and concealed porphyry-type Cu(–Mo, –Au) deposits as well as shallow vein-type Au, Ag, and Pb–Zn deposits in this area and elsewhere. 展开更多
关键词 POLYMETALLIC copper–gold deposits genetic types METALLOGENIC model magmatic–hydrothermal system TONGLING ore district Anhui Province
下载PDF
Geological and Geochemical Characteristics and Genesis of the Shaxi Porphyry Copper (Gold) Deposits, Anhui Province 被引量:5
13
作者 XU Zhaowen QIU Jiansheng +3 位作者 REN Qijiang XU Wenyi NIU Cuiyi FU Bin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1999年第1期8-18,共11页
The Shaxi porphyry copper (gold) deposits are a typical example of porphyry copper deposits associated with diorite in eastern China. Quartz diorite, which hosts the deposits, has a Rb-Sr isochron age of 127.9 ± ... The Shaxi porphyry copper (gold) deposits are a typical example of porphyry copper deposits associated with diorite in eastern China. Quartz diorite, which hosts the deposits, has a Rb-Sr isochron age of 127.9 ± 1.6 Ma. Geochemically, the rock is rich in alkalis (especially sodium), light rare earth elements (LREE) and large-ion lithophile elements (LILE), and has a relatively low initial strontium isotopic ratio (Isr=0.7058); thus it is the product of differentiation of crust-mantle mixing source magma. The model of alteration and mineralization zoning is similar to the Hollister (1974) diorite model. The ore fluids have a relatively high salinity and contain significant amounts of CO2, Ca2+, Na+ and ***CI?. The homogenization temperatures of fluid inclusions for the main mineralization stage range from 280 to 420°C, the δ18O values of the ore fluids vary from 3.51 to 5.52 %, the δD values are in the range between ?82.4 and ?59.8 %, the δ34S values of sulphides vary from ?0.3 to 2.49 %, and the δ13C values of CO2 in inclusions range between ?2.66 and ?6.53 %. Isotope data indicate that the hydrothermal ore fluids and ore substances of the Shaxi porphyry copper (gold) deposits were mainly derived from magmatic systems. 展开更多
关键词 geological and geochemical characteristics genesis of the deposit porphyry copper (gold) deposit Shaxi ANHUI
下载PDF
Rare Earth Element Geochemistry on Magmatic Rocks and Gold Deposits in Shizishan Ore-Field of Tongling, China 被引量:5
14
作者 徐晓春 陆三明 +2 位作者 谢巧勤 储国正 熊亚平 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第5期617-625,共9页
REE geochemical characteristics of the magmatic rocks and gold deposits in Shizishan ore-field of Tongling were studied. Three types of the magmatic rocks have almost the same chondrite-normalized REE patterns, Eu and... REE geochemical characteristics of the magmatic rocks and gold deposits in Shizishan ore-field of Tongling were studied. Three types of the magmatic rocks have almost the same chondrite-normalized REE patterns, Eu and Ce anomalous values, and ∑REE, ∑LREE/∑HREE regular changes, which indicates that their magmas come from the same source and their digenetic mechanism is fractional crystallization. In three gold deposits, the mineral ores and related altered rocks have similar chondrite-normalized REE patterns and sharp Eu positive anomalous values. The REE contents reduced from the magmatic rocks to skamization or alteration magmatic rocks, skam type ores, sulphide type ores, wall-rocks limestone or marble. The REE geochemical characteristics of the ores and related rocks show that primary fluids originated from magmatic differentiation in lower pressure of shallow crust, ore-forming hydrothermal solutions gained REE and mineralization elements further from leaching the magmatic rocks, then superimposed and reformed the limestones or marbles and deposited ore-forming material. 展开更多
关键词 REE geochemistry magmatic rocks gold deposits Shizishan ore-field TONGLING rare earths
下载PDF
The dilemma of the Jiaodong gold deposits: Are they unique? 被引量:126
15
作者 Richard J.Goldfarb M.Santosh 《Geoscience Frontiers》 SCIE CAS CSCD 2014年第2期139-153,共15页
The ca. 126e120 Ma Au deposits of the Jiaodong Peninsula, eastern China, define the country's largest gold province with an overall endowment estimated as&gt;3000 t Au. The vein and disseminated ores are hosted by N... The ca. 126e120 Ma Au deposits of the Jiaodong Peninsula, eastern China, define the country's largest gold province with an overall endowment estimated as&gt;3000 t Au. The vein and disseminated ores are hosted by NE-to NNE-trending brittle normal faults that parallel the margins of ca. 165e150 Ma, deeply emplaced, lower crustal melt granites. The deposits are sited along the faults for many tens of kilometers and the larger orebodies are associated with dilatational jogs. Country rocks to the granites are Pre-cambrian high-grade metamorphic rocks located on both sides of a Triassic suture between the North and South China blocks. During early Mesozoic convergent deformation, the ore-hosting structures developed as ductile thrust faults that were subsequently reactivated during Early Cretaceous "Yan-shanian"intracontinental extensional deformation and associated gold formation. 〈br〉 Classification of the gold deposits remains problematic. Many features resemble those typical of orogenic Au including the linear structural distribution of the deposits, mineralization style, ore and alteration assemblages, and ore fluid chemistry. However, Phanerozoic orogenic Au deposits are formed by prograde metamorphism of accreted oceanic rocks in Cordilleran-style orogens. The Jiaodong de-posits, in contrast, formed within two Precambrian blocks approximately 2 billion years after devolati-lization of the country rocks, and thus require a model that involves alternative fluid and metal sources for the ores. A widespread suite of ca. 130e123 Ma granodiorites overlaps temporally with the ores, but shows a poor spatial association with the deposits. Furthermore, the deposit distribution and mineral-ization style is atypical of ores formed from nearby magmas. The ore concentration requires fluid focusing during some type of sub-crustal thermal event, which could be broadly related to a combination of coeval lithospheric thinning, asthenospheric upwelling, paleo-Pacific plate subduction, and seismicity along the continental-scale Tan-Lu fault. Possible ore genesis scenarios include those where ore fluids were produced directly by the metamorphism of oceanic lithosphere and overlying sediment on the subducting paleo-Pacific slab, or by devolatilization of an enriched mantle wedge above the slab. Both the sulfur and gold could be sourced from either the oceanic sediments or the serpentinized mantle. A better understanding of the architecture of the paleo-Pacific slab during Early Cretaceous below the eastern margin of China is essential to determination of the validity of possible models. 展开更多
关键词 gold Jiaodong North China block Tectonics Mineral deposit mode
下载PDF
A Preliminary Review of Metallogenic Regularity of Gold Deposits in China 被引量:4
16
作者 WANG Chenghui WANG Denghong +3 位作者 XU Jue YING Lijuan LIU Lijun LIU Shanbao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第2期632-651,共20页
Gold is one of the most important mineral resources in China with its rich mineral resources. In recent years, significant progress has been made on the process of gold resource exploration. Some large and giant gold ... Gold is one of the most important mineral resources in China with its rich mineral resources. In recent years, significant progress has been made on the process of gold resource exploration. Some large and giant gold deposits were newly found and some important expansions in the main mining regions were also been completed. Studies on metailogenic regularity of gold deposits in China also have made achievements with a long-term work. This review aims to conclude the achievements of research on gold metallogenic regularity in China. Based on the data of about 2000 gold deposits and other ore (mineralized) occurrences, gold deposits in China were classified into five prediction types: gold deposits genetically related to granite-greenstone formation, gold deposits related to sedimentary formation (including the Carlin type and the metamorphosed clastic rock related vein gold deposit), gold deposits genetically related to volcanic rocks (including the continental and marine types), gold deposits genetically related to intrusions (including the porphyry type and the inner intrusion and contact zone related gold deposit), gold deposits of supergenesis (including fracture zone-altered rock gold deposit, placer gold deposit, gossan type gold precise chronology data of gold deposits indicate deposit and soil type gold deposit). Statistics on that there occurred 5 main periods of gold- mineralization in geological history of China. They were Neoarchean to Paleoproterozoic, Meso- Neoproterozoic, Paleozoic, Mesozoic, and Cenozoic. Gold deposits in China mainly formed in the Mesozoic and the Cenozoic. On the studies of the spatial-temporal distribution characteristics of gold deposits, 53 gold-forming belts were delineated in China. The metallogenic regularity of gold deposits was preliminarily summarized and 71 gold metallogenic series were proposed in China. This suggests that it is necceary to deepen the study on metallogenic regularity of gold deposits and to provide the theory guide for the ore-prospecting for gold resources in China. 展开更多
关键词 gold prediction types mineralization epoch gold-forming belt metallogenic regularity metallogenic series of gold deposits
下载PDF
Fluid Inclusions of Orogenic Gold Deposits in the Zhongchuan Area,Western Qinling and Their Geological Significance 被引量:4
17
作者 ZHANGZuoheng MAOJingwen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期503-514,共12页
Orogenically-derived gold deposits of the Zhongchuan area in the western Qinling are distributed in the exo-contact thermal metamorphic zone. The country rocks hosting the deposits are predominantly of Devonian age wi... Orogenically-derived gold deposits of the Zhongchuan area in the western Qinling are distributed in the exo-contact thermal metamorphic zone. The country rocks hosting the deposits are predominantly of Devonian age with low-grade metamorphism and strong deformation with the ore deposits directly controlled by multi-level tectonic systems. Three types of inclusions from these deposits have been recognized: CO2-H2O, CO2-rich, and aqueous. The ore-forming fluids were mainly CO2-NaCl-H2O type characterized by rich CO2, low salinity, high temperature and immiscibility. Incorporated with earlier isotopic data, the regional geological setting and features of diagenesis and metallogeny, it can be concluded that the ore-forming fluids were derived from deep magma and mixed with meteoric and metamorphic water. The deposits formed during an intra-continent collisional orogeny, and some of the materials derived from the deep might have been involved in the ore-forming process. 展开更多
关键词 fluid inclusion orogenic gold deposit Zhongchuan area western Qinling
下载PDF
Selenium Enrichment in Cambrian Stratabound Gold Deposits in the Western Qinling Mountains 被引量:3
18
作者 Liu Jiajun,Open Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550002Zheng Minghua, Chengdu Institute of Technology, Chengdu, Sichuan 610059Liu Jianming, Research Centre of Mineral Resources Exploration, Chinese Academy of Sciences,Beijing 100101Zhou Yufeng, Gu Xuexiang, Zhang Bin, Lin Li, Chengdu Institute of Technology, Chengdu, Sichuan 610059and Lu Wenquan Institute of Comprehensive Utilization of Mineral Resources, Chengdu, Sichuan 610041 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1997年第4期423-432,共10页
Stratabound gold deposits in the western Qinling Mountains occur in Cambrian chert formation composed of carbonaceous chert and carbonaceous slate. The distinctive chert formation provides important grounds for the mi... Stratabound gold deposits in the western Qinling Mountains occur in Cambrian chert formation composed of carbonaceous chert and carbonaceous slate. The distinctive chert formation provides important grounds for the mineralization and controls on the formation of gold deposits. Study shows that Se is exceptionally higher in both host rocks and gold orebodies. It may be recovered as a valuable component in ores for total utilization, and in some localities even independent Se orebodies (which are mined exclusively for Se) may be delineated. In gold ore Se mainly occurs as independent minerals or in the isomorphous form in sulphides and there is a positive correlation between Se and Au. 展开更多
关键词 stratabound gold deposit SELENIUM mineralization ENRICHMENT western Qinling Mountains
下载PDF
Mineralization Ages of the Jiapigou Gold Deposits,Jilin 被引量:2
19
作者 Li Junjian Shen Baofeng +2 位作者 Mao Debao Li Shuangbao Zhou Huifang and Cheng Yuming Tianjin Institute of Geology and Mineral Resources,Chinese Academy of Geological Sciences, Tianjin Nonferrous Metal Geological Exploration Bureau, Changchun, Jilin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1997年第2期180-188,共9页
The Jiapigou gold deposits are typical vein type deposits associated withArchaean greenstone belts in China. According to the crosscutting relationships between dykesand auriferous veins, single hydrothermal zircon U-... The Jiapigou gold deposits are typical vein type deposits associated withArchaean greenstone belts in China. According to the crosscutting relationships between dykesand auriferous veins, single hydrothermal zircon U-Pb dating and quartz K-Ar,^(40)Ar-^(39)Ar andRb-Sr datings, the main mineralization stage of the Jiapigou deposit has been determined to be2469-2475 Ma, while mineralization superimposition on the gold deposit occurred in1800-2000 Ma and 130-272 Ma. They form a mineralization framework of one oldermetallogenic epoch (Late Archaean-Early Proterozoic) and one younger metallogenic epoch(Mesozoic) of gold deposits in Archaean greenstone belts in China. 展开更多
关键词 mineralization age hydrothermal zircon gold deposit Jiapigou Jilin
下载PDF
Geology and S-Pb isotope geochemistry of the Hatu gold deposit in West Junggar,NW China:Insights into ore genesis and metal source
20
作者 Shen Han Zhenju Zhou +6 位作者 Xiaohua Deng Yanshuang Wu Xi Chen Abulimiti Aibai Yong Wang Xiaoyu Jia Yanjing Chen 《Acta Geochimica》 EI CAS CSCD 2024年第6期1205-1222,共18页
The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated wi... The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated with the Anqi fault.This deposit exhibits characteristics typical of a fault-controlled lode system,and the orebodies consist of auriferous quartz veins and altered wall rocks within Early Carboniferous volcano-sedimentary rocks.Three stages of mineralization have been identified in the Hatu gold deposit:the early pyrite-albite-quartz stage,the middle polymetallic sulfides-ankerite-quartz stage,and late quartz-calcite stage.The sulfur isotopic values of pyrite and arsenopyrite vary in a narrow range from-0.8‰to1.3‰and an average of 0.4‰,the near-zeroδ~(34)S values implicate the thorough homogenization of the sulfur isotopes during the metamorphic dehydration of the Early Carboniferous volcano-sedimentary rocks.Lead isotopic results of pyrite and arsenopyrite(^(206)Pb/^(204)Pb=17.889-18.447,^(207)Pb/^(204)Pb=15.492-15.571,^(208)Pb/^(204)Pb=37.802-38.113)are clustered between orogenic and mantle/upper crust lines,indicating that the lead was mainly sourced from the hostrocks within the Early Carboniferous Tailegula Formation.The characteristics of S and Pb isotopes suggest that the ore-forming metals of the Hatu orogenic gold deposit are of metamorphogenic origin,associated with the continental collision between the Yili-Kazakhstan and Siberian plates during the Late Carboniferous. 展开更多
关键词 Hatu gold deposit Sulfur isotope Lead isotope Orogenic gold deposit West Junggar
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部